English

∣ ∣ ∣ ∣ ∣ 1 a A 2 a 2 1 a A a 2 1 ∣ ∣ ∣ ∣ ∣ = ( a 3 − 1 ) 2 - Mathematics

Advertisements
Advertisements

Question

\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

Solution

\[\text{ Let LHS }= \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix}\] 
\[\Delta = \begin{vmatrix} 1 + a^2 + a & 1 + a^2 + a & 1 + a^2 + a\\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix} \left[\text{ Applyng }R_1 \to R_1 + R_2 + R_2 \right]\] 
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 1 & 1 \\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\] 
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 0 & 0 \\ a^2 & 1 - a^2 & a - a^2 \\a & a^2 - a & 1 - a \end{vmatrix}\] 
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 0 & 0 \\ a^2 & \left( 1 - a \right)\left( 1 + a \right) & a\left( 1 - a \right)\\a & a\left( a - 1 \right) & 1 - a \end{vmatrix}\] 
\[ = \left( 1 + a^2 + a \right)\left( a - 1 \right)\left( a - 1 \right) \begin{vmatrix} 1 & 0 & 0\\ a^2 & - \left( 1 + a \right) & - a\\a & a & - 1 \end{vmatrix} \left[\text{ Taking out (a - 1) common from }C_2\text{ and }C_3 \right]\]
\[ = \left( a^3 - 1 \right)\left\{ \left( a - 1 \right) \begin{vmatrix} 1 & 0 & 0\\a & - \left( 1 + a \right) & - a\\a & a & - 1 \end{vmatrix} \right\} \left[ \because \left( 1 + a^2 + a \right)\left( a - 1 \right) = \left( a^3 - 1 \right) \right]\]
\[ = \left( a^3 - 1 \right)\left\{ \left( a - 1 \right)\left( 1 + a^{} + a^2 \right) \right\}\] 
\[ = \left( a^3 - 1 \right)\left( a^3 - 1 \right)\] 
\[ = \left( a^3 - 1 \right)^2 \] 
\[ = RHS \] 

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 60]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 30 | Page 60

RELATED QUESTIONS

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


2x − y = − 2
3x + 4y = 3


5x + 7y = − 2
4x + 6y = − 3


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


If A is a singular matrix, then write the value of |A|.

 

If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


\[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\]  to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×