Advertisements
Advertisements
Question
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix}\]
\[\Delta = \begin{vmatrix} 1 + a^2 + a & 1 + a^2 + a & 1 + a^2 + a\\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix} \left[\text{ Applyng }R_1 \to R_1 + R_2 + R_2 \right]\]
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 1 & 1 \\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\]
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 0 & 0 \\ a^2 & 1 - a^2 & a - a^2 \\a & a^2 - a & 1 - a \end{vmatrix}\]
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 0 & 0 \\ a^2 & \left( 1 - a \right)\left( 1 + a \right) & a\left( 1 - a \right)\\a & a\left( a - 1 \right) & 1 - a \end{vmatrix}\]
\[ = \left( 1 + a^2 + a \right)\left( a - 1 \right)\left( a - 1 \right) \begin{vmatrix} 1 & 0 & 0\\ a^2 & - \left( 1 + a \right) & - a\\a & a & - 1 \end{vmatrix} \left[\text{ Taking out (a - 1) common from }C_2\text{ and }C_3 \right]\]
\[ = \left( a^3 - 1 \right)\left\{ \left( a - 1 \right) \begin{vmatrix} 1 & 0 & 0\\a & - \left( 1 + a \right) & - a\\a & a & - 1 \end{vmatrix} \right\} \left[ \because \left( 1 + a^2 + a \right)\left( a - 1 \right) = \left( a^3 - 1 \right) \right]\]
\[ = \left( a^3 - 1 \right)\left\{ \left( a - 1 \right)\left( 1 + a^{} + a^2 \right) \right\}\]
\[ = \left( a^3 - 1 \right)\left( a^3 - 1 \right)\]
\[ = \left( a^3 - 1 \right)^2 \]
\[ = RHS \]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Prove that :
Prove that :
Prove that :
2x − y = − 2
3x + 4y = 3
5x + 7y = − 2
4x + 6y = − 3
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
If A is a singular matrix, then write the value of |A|.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.