Advertisements
Advertisements
Question
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Solution
x + y − z = 0 ...(1)
x − 2y + z = 0 ...(2)
3x + 6y − 5z = 0 ...(3)
The given system of homogeneous equations can be written in matrix form as follows:
\[\begin{bmatrix}1 & 1 & - 1 \\ 1 & - 2 & 1 \\ 3 & 6 & - 5\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[AX = O\]
Here,
\[A = \begin{bmatrix}1 & 1 & - 1 \\ 1 & - 2 & 1 \\ 3 & 6 & - 5\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }O = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & 1 & - 1 \\ 1 & - 2 & 1 \\ 3 & 6 & - 5\end{vmatrix}\]
\[ = 1\left( 10 - 6 \right) - 1\left( - 5 - 3 \right) - 1\left( 6 + 6 \right)\]
\[ = 4 + 8 - 12\]
\[ = 0\]
So, the given systemof homogeneous equations has non-trivial solution.
Substituting z=k in eq. (1) & eq. (2), we get
\[x+y=k \text{ and }x-2y=-k\]
\[ \Rightarrow \begin{bmatrix}1 & 1 \\ 1 & - 2\end{bmatrix}\binom{x}{y} = \binom{k}{ - k}\]
\[AX=B\]
Here,
\[A=\begin{bmatrix}1 & 1 \\ 1 & - 2\end{bmatrix},X=\binom{x}{y}\text{ and }B=\binom{k}{ - k}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 \\ 1 & - 2\end{vmatrix} = - 3\]
\[\text{ So,} A^{- 1}\text{ exists .} \]
\[adj A = \begin{bmatrix}- 2 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ \Rightarrow A^{- 1} = \frac{1}{- 3}\begin{bmatrix}- 2 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{- 3}\begin{bmatrix}- 2 & - 1 \\ - 1 & 1\end{bmatrix}\binom{k}{ - k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{- 3}\binom{ - 2k + k}{ - k - k}\]
\[\text{ Thus,}x=\frac{k}{3}, y=\frac{2k}{3}\text{ and }z=k\left( \text{ wherekis any real number }\right)\text{ satisfy the given system of equations.}\]
APPEARS IN
RELATED QUESTIONS
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Show that
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
5x + 7y = − 2
4x + 6y = − 3
9x + 5y = 10
3y − 2x = 8
Given: x + 2y = 1
3x + y = 4
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
x + 2y = 5
3x + 6y = 15
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.