Advertisements
Advertisements
प्रश्न
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
उत्तर
x + y − z = 0 ...(1)
x − 2y + z = 0 ...(2)
3x + 6y − 5z = 0 ...(3)
The given system of homogeneous equations can be written in matrix form as follows:
\[\begin{bmatrix}1 & 1 & - 1 \\ 1 & - 2 & 1 \\ 3 & 6 & - 5\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[AX = O\]
Here,
\[A = \begin{bmatrix}1 & 1 & - 1 \\ 1 & - 2 & 1 \\ 3 & 6 & - 5\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }O = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & 1 & - 1 \\ 1 & - 2 & 1 \\ 3 & 6 & - 5\end{vmatrix}\]
\[ = 1\left( 10 - 6 \right) - 1\left( - 5 - 3 \right) - 1\left( 6 + 6 \right)\]
\[ = 4 + 8 - 12\]
\[ = 0\]
So, the given systemof homogeneous equations has non-trivial solution.
Substituting z=k in eq. (1) & eq. (2), we get
\[x+y=k \text{ and }x-2y=-k\]
\[ \Rightarrow \begin{bmatrix}1 & 1 \\ 1 & - 2\end{bmatrix}\binom{x}{y} = \binom{k}{ - k}\]
\[AX=B\]
Here,
\[A=\begin{bmatrix}1 & 1 \\ 1 & - 2\end{bmatrix},X=\binom{x}{y}\text{ and }B=\binom{k}{ - k}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 \\ 1 & - 2\end{vmatrix} = - 3\]
\[\text{ So,} A^{- 1}\text{ exists .} \]
\[adj A = \begin{bmatrix}- 2 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ \Rightarrow A^{- 1} = \frac{1}{- 3}\begin{bmatrix}- 2 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{- 3}\begin{bmatrix}- 2 & - 1 \\ - 1 & 1\end{bmatrix}\binom{k}{ - k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{- 3}\binom{ - 2k + k}{ - k - k}\]
\[\text{ Thus,}x=\frac{k}{3}, y=\frac{2k}{3}\text{ and }z=k\left( \text{ wherekis any real number }\right)\text{ satisfy the given system of equations.}\]
APPEARS IN
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Show that x = 2 is a root of the equation
Solve the following determinant equation:
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
Prove that :
5x + 7y = − 2
4x + 6y = − 3
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
If A is a singular matrix, then write the value of |A|.
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in