Advertisements
Advertisements
प्रश्न
Show that x = 2 is a root of the equation
उत्तर
\[\text{ Let }∆ = \begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix}\]
\[ = \begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 - x & 2x + 6 & x + 3\end{vmatrix} \left[\text{ Applying }R_3\text{ to }R_3 - R_1 \right]\]
\[ = \left( x + 3 \right)\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 1 & 2 & 1\end{vmatrix} \]
\[ = \left( x + 3 \right)\begin{vmatrix}x - 2 & 3x - 6 & - x + 2 \\ 2 & - 3x & x - 3 \\ - 1 & 2 & 1\end{vmatrix} \left[\text{ Applying } R_1 \text{ to }R_1 - R_2 \right]\]
\[ = \left( x + 3 \right)\left( x - 2 \right)\begin{vmatrix}1 & 3 & - 1 \\ 2 & - 3x & x - 3 \\ - 1 & 2 & 1\end{vmatrix} \]
\[ = \left( x + 3 \right)\left( x - 2 \right)\begin{vmatrix}1 & 3 & 0 \\ 2 & - 3x & x - 1 \\ - 1 & 2 & 0\end{vmatrix} \left[\text{ Applying }C_3 \text{ to }C_3 + C_1 \right]\]
\[ = \left( x + 3 \right)\left( x - 2 \right)\left( x - 1 \right)\begin{vmatrix}1 & 3 & 0 \\ 2 & - 3x & 1 \\ - 1 & 2 & 0\end{vmatrix} \]
\[ = \left( x + 3 \right)\left( x - 2 \right)\left( x - 1 \right)\left\{ - 1\begin{vmatrix}1 & 3 \\ - 1 & 2\end{vmatrix} \right\} \left[ \text{ Expanding along }C_3 \right]\]
\[ = - 5\left( x + 3 \right)\left( x - 2 \right)\left( x - 1 \right)\]
\[x = 2, - 3, 1\]
APPEARS IN
संबंधित प्रश्न
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
Prove that :
3x + ay = 4
2x + ay = 2, a ≠ 0
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
If A is a singular matrix, then write the value of |A|.
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.