Advertisements
Advertisements
प्रश्न
उत्तर
Let
Now,
\[∆ = \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix}\]
\[ = \begin{vmatrix}p & b & c \\ 0 & q - b & c - r \\ a & b & r\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ = p\left[ r\left( q - b \right) - b\left( c - r \right) \right] + a\left[ b\left( c - r \right) - c\left( q - b \right) \right] \left[\text{ Expanding along first column }\right]\]
\[ = pr\left( q - b \right) + pb\left( r - c \right) - ab\left( r - c \right) - ac\left( q - b \right)\]
\[ = \left( pr - ac \right)\left( q - b \right) + b\left( p - a \right)\left( r - c \right)\]
\[\text{ Since, }∆ = 0 . \]
\[ \therefore \left( pr - ac \right)\left( q - b \right) + b\left( p - a \right)\left( r - c \right) = 0\]
\[ \Rightarrow \frac{pr - ac}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{pr - ar + ar - ac}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{r\left( p - a \right) + a\left( r - c \right)}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{r}{r - c} + \frac{a}{p - a} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = \frac{p}{p - a} + \frac{q}{q - b} - \frac{a}{p - a} - \frac{b}{q - b}\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = \frac{p - a}{p - a} + \frac{q - b}{q - b}\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = 2\]
\[\text{Hence, the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}\text{ is }2 .\]
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Solve the following determinant equation:
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Prove that :
Prove that :
Prove that :
Prove that
2x − y = − 2
3x + 4y = 3
3x + ay = 4
2x + ay = 2, a ≠ 0
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
3x + y = 5
− 6x − 2y = 9
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.