हिंदी

Solve Each of the Following System of Homogeneous Linear Equations. 3x + Y + Z = 0 X − 4y + 3z = 0 2x + 5y − 2z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0

उत्तर

Given: 3x + y + z = 0
            x − 4y + 3z = 0
            2x + 5y − 2z = 0

\[D = \begin{vmatrix}3 & 1 & 1 \\ 1 & - 4 & 3 \\ 2 & 5 & - 2\end{vmatrix} = 0\] 
The system has infinitely many solutions . Putting z = k in the first two equations, we get
\[3x + y = - k\] 
\[x - 4y = - 3k\] 
Solving these equations by Cramer's rule, we get
\[x = \frac{D_1}{D} = \frac{\begin{vmatrix}- k & 1 \\ - 3k & - 4\end{vmatrix}}{\begin{vmatrix}3 & 1 \\ 1 & - 4\end{vmatrix}} = - \frac{7k}{13}\] 
\[y = \frac{D_2}{D} = \frac{\begin{vmatrix}3 & - k \\ 1 & - 3k\end{vmatrix}}{\begin{vmatrix}3 & 1 \\ 1 & - 4\end{vmatrix}} = \frac{8k}{13} \] 
\[z = k\] 
\[ \Rightarrow x = - \frac{7k}{13}, y = \frac{8k}{13}\text{ and }z = k\] 
\[or x = - 7k, y = 8k\text{ and }z = 13k\] 
Clearly, these values satisfy the third equation . 
Thus, 
\[x = - 7k\] 
\[y = 8k    \left[ k \in R \right]\] 
\[z = 13k \] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.5 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.5 | Q 3 | पृष्ठ ८९

संबंधित प्रश्न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


For what value of x the matrix A is singular? 
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Prove that :

\[\begin{vmatrix}z & x & y \\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4\end{vmatrix} = \begin{vmatrix}x & y & z \\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4\end{vmatrix} = \begin{vmatrix}x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z\end{vmatrix} = xyz \left( x - y \right) \left( y - z \right) \left( z - x \right) \left( x + y + z \right) .\]

 


2x − y = 17
3x + 5y = 6


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


Find the value of the determinant 
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]

 


If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23


Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\]  to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.


A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×