Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
उत्तर
Here,
\[A = \begin{bmatrix}3 & 4 & 2 \\ 0 & 2 & - 3 \\ 1 & - 2 & 6\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}3 & 4 & 2 \\ 0 & 2 & - 3 \\ 1 & - 2 & 6\end{vmatrix}\]
\[ = 3\left( 12 - 6 \right) - 4\left( 0 + 3 \right) + 2(0 - 2)\]
\[ = 18 - 12 - 4\]
\[ = 2\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & - 3 \\ - 2 & 6\end{vmatrix} = 6, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}0 & - 3 \\ 1 & 6\end{vmatrix} = - 3 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}0 & 2 \\ 1 & - 2\end{vmatrix} = - 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}4 & 2 \\ - 2 & 6\end{vmatrix} = - 28 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}3 & 2 \\ 1 & 6\end{vmatrix} = 16 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}3 & 4 \\ 1 & - 2\end{vmatrix} = 10\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}4 & 2 \\ 2 & - 3\end{vmatrix} = - 16, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}3 & 2 \\ 0 & - 3\end{vmatrix} = 9, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}3 & 4 \\ 0 & 2\end{vmatrix} = 6\]
\[adj A = \begin{bmatrix}6 & - 3 & - 2 \\ - 28 & 16 & 10 \\ - 16 & 9 & 6\end{bmatrix}^T \]
\[ = \begin{bmatrix}6 & - 28 & - 16 \\ - 3 & 16 & 9 \\ - 2 & 10 & 6\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{2}\begin{bmatrix}6 & - 28 & - 16 \\ - 3 & 16 & 9 \\ - 2 & 10 & 6\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{2}\begin{bmatrix}6 & - 28 & - 16 \\ - 3 & 16 & 9 \\ - 2 & 10 & 6\end{bmatrix}\begin{bmatrix}8 \\ 3 \\ - 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{2}\begin{bmatrix}48 - 84 + 32 \\ - 24 + 48 - 18 \\ - 16 + 30 - 12\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{2}\begin{bmatrix}- 4 \\ 6 \\ 2\end{bmatrix}\]
\[ \Rightarrow x = \frac{- 4}{2}, y = \frac{6}{2}\text{ and }z = \frac{2}{2}\]
\[ \therefore x = - 2, y = 3\text{ and }z = 1\]
APPEARS IN
संबंधित प्रश्न
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Prove that :
2x − y = 17
3x + 5y = 6
5x + 7y = − 2
4x + 6y = − 3
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
x+ y = 5
y + z = 3
x + z = 4
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
If A is a singular matrix, then write the value of |A|.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
System of equations x + y = 2, 2x + 2y = 3 has ______
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.