हिंदी

Evaluate : ∣ ∣ ∣ ∣ X + λ X X X X + λ X X X X + λ ∣ ∣ ∣ ∣ - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]

उत्तर

\[∆ = \begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]

\[ = \begin{vmatrix}\lambda & 0 & x \\ - \lambda & \lambda & x \\ 0 & - \lambda & x + \lambda\end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_2 , C_2 \to C_2 - C_3 \right]\]

\[ = \begin{vmatrix}\lambda & 0 & x \\ - \lambda & 0 & 2x + \lambda \\ 0 & - \lambda & x + \lambda\end{vmatrix} \left[ \text{ Applying }R_1 \text{ to } R_2 + R_3 \right]\]

\[ = \lambda\begin{vmatrix}0 & 2x + \lambda \\ - \lambda & x + \lambda\end{vmatrix} + x\begin{vmatrix}- \lambda & 0 \\ 0 & - \lambda\end{vmatrix}\]

\[ = \lambda[\lambda(2x + \lambda)] + x \lambda^2 \]

\[ = \lambda^2 (2x + \lambda + \lambda^2 x)\]

\[ = 3 \lambda^2 x + \lambda^3 \]

\[ = \lambda^2 (3x + \lambda )\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 5 | पृष्ठ ५८

संबंधित प्रश्न

Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & x & x \\ x & x + a & x \\ x & x & x + a\end{vmatrix} = 0, a \neq 0\]

 


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}\left( a + 1 \right) \left( a + 2 \right) & a + 2 & 1 \\ \left( a + 2 \right) \left( a + 3 \right) & a + 3 & 1 \\ \left( a + 3 \right) \left( a + 4 \right) & a + 4 & 1\end{vmatrix} = - 2\]

 


Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

3x + ay = 4
2x + ay = 2, a ≠ 0


2x + 3y = 10
x + 6y = 4


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x = 

 


The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.


The system of linear equations

3x – 2y – kz = 10

2x – 4y – 2z = 6

x + 2y – z = 5m

is inconsistent if ______.


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×