Advertisements
Advertisements
प्रश्न
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
उत्तर
\[∆ = \begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
\[ = \begin{vmatrix}\lambda & 0 & x \\ - \lambda & \lambda & x \\ 0 & - \lambda & x + \lambda\end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_2 , C_2 \to C_2 - C_3 \right]\]
\[ = \begin{vmatrix}\lambda & 0 & x \\ - \lambda & 0 & 2x + \lambda \\ 0 & - \lambda & x + \lambda\end{vmatrix} \left[ \text{ Applying }R_1 \text{ to } R_2 + R_3 \right]\]
\[ = \lambda\begin{vmatrix}0 & 2x + \lambda \\ - \lambda & x + \lambda\end{vmatrix} + x\begin{vmatrix}- \lambda & 0 \\ 0 & - \lambda\end{vmatrix}\]
\[ = \lambda[\lambda(2x + \lambda)] + x \lambda^2 \]
\[ = \lambda^2 (2x + \lambda + \lambda^2 x)\]
\[ = 3 \lambda^2 x + \lambda^3 \]
\[ = \lambda^2 (3x + \lambda )\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Solve the following determinant equation:
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
3x + ay = 4
2x + ay = 2, a ≠ 0
2x + 3y = 10
x + 6y = 4
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Write the value of the determinant
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.