हिंदी

Prove that : ∣ ∣ ∣ ∣ X + 4 X X X X + 4 X X X X + 4 ∣ ∣ ∣ ∣ = 16 ( 3 X + 4 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

उत्तर

\[\text{ Let LHS }= \Delta = \begin{vmatrix} x + 4 & x & x\\x & x + 4 & x\\x & x & x + 4 \end{vmatrix}\] 
\[ = \begin{vmatrix} 3x + 4 & 3x + 4 & 3x + 4\\x & x + 4 & x\\x & x & x + 4 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2 + R_3 \right] \] 
\[ = \left( 3x + 4 \right)\begin{vmatrix} 1 & 1 & 1\\x & x + 4 & x \\x & x & x + 4 \end{vmatrix} \left[\text{ Taking out }\left( 3x + 4 \right)\text{ common from }R_1 \right]\] 
\[ = \left( 3x + 4 \right)\begin{vmatrix} 1 & 0 & 0\\x & 4 & 0\\x & 0 & 4 \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\] 
\[ = \left( 3x + 4 \right) \left( 4^2 \right) \left[\text{ Expanding along }R_1 \right]\] 
\[ = 16\left( 3x + 4 \right) \] 
\[ = RHS\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 25 | पृष्ठ ५९

संबंधित प्रश्न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


Show that

\[\begin{vmatrix}x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c\end{vmatrix} =\text{ 0 where a, b, c are in A . P .}\]

 


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

2x + 3y = 10
x + 6y = 4


5x + 7y = − 2
4x + 6y = − 3


9x + 5y = 10
3y − 2x = 8


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




If xyare different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is





If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×