हिंदी

Solve the Following System of Equations by Matrix Method: 6x − 12y + 25z = 4 4x + 15y − 20z = 3 2x + 18y + 15z = 10 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10

उत्तर

Here,
\[A = \begin{bmatrix}6 & - 12 & 25 \\ 4 & 15 & - 20 \\ 2 & 18 & 15\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}6 & - 12 & 25 \\ 4 & 15 & - 20 \\ 2 & 18 & 15\end{vmatrix}\]
\[ = 6\left( 225 + 360 \right) + 12\left( 60 + 40 \right) + 25(72 - 30)\]
\[ = 3510 + 1200 + 1050\]
\[ = 5760\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}15 & - 20 \\ 18 & 15\end{vmatrix} = 585, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}4 & - 20 \\ 2 & 15\end{vmatrix} = - 100 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}4 & 15 \\ 2 & 18\end{vmatrix} = 42\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 12 & 25 \\ 18 & 15\end{vmatrix} = 630, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}6 & 25 \\ 2 & 15\end{vmatrix} = 40, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}6 & - 12 \\ 2 & 18\end{vmatrix} = - 132\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 12 & 25 \\ 15 & - 20\end{vmatrix} = - 135, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}6 & 25 \\ 4 & - 20\end{vmatrix} = 220, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}6 & - 12 \\ 4 & 15\end{vmatrix} = 138\]
\[adj A = \begin{bmatrix}585 & - 100 & 42 \\ 630 & 40 & - 132 \\ - 135 & 220 & 138\end{bmatrix}^T \]
\[ = \begin{bmatrix}585 & 630 & - 135 \\ - 100 & 40 & 220 \\ 42 & - 132 & 138\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{5760}\begin{bmatrix}585 & 630 & - 135 \\ - 100 & 40 & 220 \\ 42 & - 132 & 138\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{5760}\begin{bmatrix}585 & 630 & - 135 \\ - 100 & 40 & 220 \\ 42 & - 132 & 138\end{bmatrix}\begin{bmatrix}4 \\ 3 \\ 10\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{5760}\begin{bmatrix}2340 + 1890 - 1350 \\ - 400 + 120 + 2200 \\ 168 - 396 + 1380\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{5760}\begin{bmatrix}2880 \\ 1920 \\ 1152\end{bmatrix}\]
\[ \Rightarrow x = \frac{2880}{5760}, y = \frac{1920}{5760}\text{ and }z = \frac{1152}{5760}\]
\[ \therefore x = \frac{1}{2}, y = \frac{1}{3}\text{ and }z = \frac{1}{5}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.03 | पृष्ठ १४

संबंधित प्रश्न

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix} = 0, a \neq b\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


2x − y = 17
3x + 5y = 6


9x + 5y = 10
3y − 2x = 8


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x = 

 


The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.


A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×