हिंदी

Prove that : ∣ ∣ ∣ ∣ a − B − C 2 a 2 a 2 B B − C − a 2 B 2 C 2 C C − a − B ∣ ∣ ∣ ∣ = ( a + B + C ) 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 

उत्तर

\[\text{ Let LHS } = ∆ = \begin{vmatrix} a - b - c & 2a & 2a\\ 2b & b - c - a & 2b\\2c & 2c & c - a - b \end{vmatrix}\] 
\[ \Rightarrow ∆ = \begin{vmatrix} a + b + c & a + b + c & a + b + c \\ 2b & b - c - a & 2b\\2c & 2c & c - a - b \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2 + R_3 \right]\] 
\[ = \left( a + b + c \right)\begin{vmatrix} 1 & 1 & 1 \\ 2b & b - c - a & 2b\\ 2c & 2c & c - a - b \end{vmatrix}\]
\[ = \left( a + b + c \right) \begin{vmatrix} 0 & 1 & 1 \\ b + c + a & b - c - a & 2b\\ 0 & 2c & c - a - b \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_2 \right]\] 
\[ = \left( a + b + c \right)\left\{ \left( a + b + c \right) \times \begin{vmatrix} 1 & 1 \\ 2c & c - a - b \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\] 
\[ = \left( a + b + c \right)^3 \] 
\[ = RHS\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 15 | पृष्ठ ५९

संबंधित प्रश्न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`


Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


For what value of x the matrix A is singular? 
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix} = 0\]

If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.


Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]




Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations: 

x +y + z = 6

y + 3z = 11

and x -2y +z = 0


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×