Advertisements
Advertisements
प्रश्न
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
उत्तर
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
\[ = \begin{vmatrix}\sin\alpha\sin\delta & \cos\alpha\cos\delta & \cos(\alpha + \delta) \\ \sin\beta\sin\delta & \cos\beta\cos\delta & \cos(\beta + \delta) \\ \sin\gamma\sin\delta & \cos\gamma\cos\delta & \cos(\gamma + \delta)\end{vmatrix} \left[\text{ Applying }C_1 \to \sin\delta C_1 \text{ and }C_2 \to \cos\delta C_2 \right]\]
\[ = \begin{vmatrix}\sin\alpha\sin\delta & \cos(\alpha + \delta) & \cos(\alpha + \delta) \\ \sin\beta\sin\delta & \cos(\beta + \delta) & \cos(\beta + \delta) \\ \sin\gamma\sin\delta & \cos(\gamma + \delta) & \cos(\gamma + \delta)\end{vmatrix} \left[ \text{ Applying }C_2 \to C_2 - C_1 \right]\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Solve the following system of equations by matrix method:
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.