हिंदी

Without Expanding, Show that the Value of the Following Determinant is Zero: ∣ ∣ ∣ ∣ ∣ Sin 2 a Cot a 1 Sin 2 B Cot B 1 Sin 2 C Cot C 1 ∣ ∣ ∣ ∣ ∣ , W H E R E a , B , C Are the Angles of δ a B C - Mathematics

Advertisements
Advertisements

प्रश्न

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]

उत्तर

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}\]
\[ = \begin{vmatrix}\sin^2 A - \sin^2 B & \cot A - \cot B & 0 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C - \sin^2 B & \cot C - \cot B & 0\end{vmatrix} \left[ \text{ Applying } R_1 \to R_1 - R_2 \text{ and }R_3 \to R_3 - R_2 \right]\]
\[ = \begin{vmatrix}\sin\left( A + B \right)\sin\left( A - B \right) & \frac{\cos A\sin B - \cos B\sin A}{\sin A\sin B} & 0 \\ \sin^2 B & \cot B & 1 \\ \sin\left( C + B \right)\sin\left( C - B \right) & \frac{\cos C\sin B - \cos B\sin C}{\sin B\sin C} & 0\end{vmatrix}\]
\[ = \begin{vmatrix}\sin\left( \pi - C \right)\sin\left( A - B \right) & \frac{- \sin\left( A - B \right)}{\sin A\sin B} & 0 \\ \sin^2 B & cot B & 1 \\ \sin\left( \pi - A \right)\sin\left( C - B \right) & \frac{- \sin\left( C - B \right)}{\sin B\sin C} & 0\end{vmatrix} \left[ \because A + B + C = \pi \right]\]
\[ = \begin{vmatrix}\sin C\sin\left( A - B \right) & \frac{- \sin\left( A - B \right)}{\sin A\sin B} & 0 \\ \sin^2 B & \frac{\cos B}{\sin B} & 1 \\ \sin A\sin\left( C - B \right) & \frac{- \sin\left( C - B \right)}{\sin B\sin C} & 0\end{vmatrix}\]
\[ = \frac{\sin\left( A - B \right)\sin\left( C - B \right)}{\sin B}\begin{vmatrix}\sin C & \frac{- 1}{\sin A} & 0 \\ \sin^2 B & \cos B & 1 \\ \sin A & \frac{- 1}{\sin C} & 0\end{vmatrix}\]
\[ = \frac{\sin\left( A - B \right)\sin\left( C - B \right)}{\sin B\sin A\sin C}\begin{vmatrix}\sin C\sin A & - 1 & 0 \\ \sin^2 B & \cos B & 1 \\ \sin A\sin C & - 1 & 0\end{vmatrix} \left[ \text{ Applying }R_1 \to \sin A R_1\text{  and }R_3 \to \sin C R_3 \right]\]
\[ = \frac{\sin\left( A - B \right)\sin\left( C - B \right)}{\sin B\sin A\sin C}\begin{vmatrix}0 & 0 & 0 \\ \sin^2 B & \cos B & 1 \\ \sin A\sin C & - 1 & 0\end{vmatrix} \left[ \text{ Applying }R_1 \to R_1 - R_3 \right]\]
\[ = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 2.17 | पृष्ठ ५७

संबंधित प्रश्न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}a^2 & a^2 - \left( b - c \right)^2 & bc \\ b^2 & b^2 - \left( c - a \right)^2 & ca \\ c^2 & c^2 - \left( a - b \right)^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]

Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 


Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


\[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×