Advertisements
Advertisements
प्रश्न
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
उत्तर
\[∆ = \begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix} \]
\[\text{ When }a = b,\text{ the first two rows become identical }. \text{ Hence, } \text{a - b is a factor }. \]
\[\text{ Similarly, when b = c the second and third rows become identical }. \text{ So, b - c is also a factor }. \]
\[\text{ Also, when }c = a, \text{the third and first rows become identical} .\text{ Hence, c - a is also a factor }. \]
\[\text{ The product of diagonal elements }, a(c + a) c^2 \text{ is }4 .\text{ So, the other factor should be a linear in a, b and c . It should also remain unaltered when any two letters are changed }. \text{ Let this factor be } \lambda (a + b + c) . \]
\[\text{Here, } \lambda \text{ is a constant . To find this, we have }\]
\[a = 0, b = 1, c = 2\]
\[\begin{vmatrix}0 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 4\end{vmatrix} = \lambda(a - b)(b - c)(c - a)(a + b + c)\]
\[\begin{vmatrix}0 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 4\end{vmatrix} = \lambda(0 - 1)(1 - 2)(2 - 1)(0 + 1 + 2)\]
\[ \Rightarrow - 6 = 6\lambda\]
\[ \Rightarrow \lambda = - 1\]
\[\text{ Thus, } \]
\[ \begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix} = - ((a + b + c))(a - b)(b - c)(c - a)\]
APPEARS IN
संबंधित प्रश्न
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Show that
Solve the following determinant equation:
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
Prove that :
Prove that :
Prove that :
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
Write the value of the determinant
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.