Advertisements
Advertisements
प्रश्न
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
उत्तर
Here,
\[5x + 3y + 7z = 4 . . . (1) \]
\[3x + 26y + 2z = 9 . . . (2)\]
\[7x + 2y + 10z = 5 . . . (3)\]
\[or , AX = B \]
where,
\[ A = \begin{bmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} \text{ and } B = \begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[\begin{bmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{vmatrix}\]
\[ = 5\left( 260 - 4 \right) - 3\left( 30 - 14 \right) + 7(6 - 182)\]
\[ = 1280 - 48 - 1232\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right)B = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}26 & 2 \\ 2 & 10\end{vmatrix} = 256 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & 2 \\ 7 & 10\end{vmatrix} = - 16, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 26 \\ 7 & 2\end{vmatrix} = - 176\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 7 \\ 2 & 10\end{vmatrix} = - 16 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}5 & 7 \\ 7 & 10\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}5 & 3 \\ 7 & 2\end{vmatrix} = 11\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 7 \\ 26 & 2\end{vmatrix} = - 176, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}5 & 7 \\ 3 & 2\end{vmatrix} = 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}5 & 3 \\ 3 & 26\end{vmatrix} = 121\]
\[adj A = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}^T \]
\[ = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}\begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[ = \begin{bmatrix}1024 - 144 - 880 \\ - 64 + 9 + 55 \\ - 704 + 99 + 605\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ if }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, }AX=B \text{ has infinitely many solutions.}\]
Substituting z=k in eq. (1) and eq. (2), we get
\[5x + 3y = 4 - 7k\text{ and }3x + 26y = 9 - 2k\]
\[\begin{bmatrix}5 & 3 \\ 3 & 26\end{bmatrix}\binom{x}{y} = \binom{4 - 7k}{9 - 2k}\]
Now,
\[\left| A \right| = \begin{vmatrix}5 & 3 \\ 3 & 26\end{vmatrix}\]
\[ = 130 - 9\]
\[ = 121 \neq 0\]
\[adj A = \begin{vmatrix}26 & - 3 \\ - 3 & 5\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{121}\begin{bmatrix}26 & - 3 \\ - 3 & 5\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{121}\begin{bmatrix}26 & - 3 \\ - 3 & 5\end{bmatrix}\binom{4 - 7k}{9 - 2k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{121}\binom{104 - 182k - 27 + 6k}{ - 12 + 21k + 45 - 10k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{77 - 176k}{121}}{\frac{33 + 11k}{121}}\]
\[ \Rightarrow x = \frac{11\left( 7 - 16k \right)}{121}, y = \frac{11\left( 3 + k \right)}{121} and z = k\]
\[ \therefore x = \frac{7 - 16k}{11}, y = \frac{3 + k}{11}and z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = \frac{7 - 16k}{11}, y = \frac{3 + k}{11}\text{ and }z = k \left( \text{where k is a real number } \right)\text{ satisfy the given system of equations .}\]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Solve the following determinant equation:
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
2x − y = 1
7x − 2y = −7
Prove that :
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
x + y = 1
x + z = − 6
x − y − 2z = 3
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.