Advertisements
Advertisements
प्रश्न
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
उत्तर
Given: 2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
\[D = \begin{vmatrix}2 & - 3 & - 4 \\ - 2 & 5 & - 1 \\ 3 & - 1 & 5\end{vmatrix}\]
\[ = 2(25 - 1) + 3( - 10 + 3) - 4(2 - 15)\]
\[ = 2(24) + 3( - 7) - 4( - 13)\]
\[ = 79\]
\[ D_1 = \begin{vmatrix}29 & - 3 & - 4 \\ - 15 & 5 & - 1 \\ - 11 & - 1 & 5\end{vmatrix}\]
\[ = 29(25 - 1) + 3( - 75 - 11) - 4(15 + 55)\]
\[ = 29(24) + 3( - 86) - 4(70)\]
\[ = 158\]
\[ D_2 = \begin{vmatrix}2 & 29 & - 4 \\ - 2 & - 15 & - 1 \\ 3 & - 11 & 5\end{vmatrix}\]
\[ = 2( - 75 - 11) - 29( - 10 + 3) - 4(22 + 45)\]
\[ = 2( - 86) - 29( - 7) - 4(67)\]
\[ = - 237\]
\[ D_3 = \begin{vmatrix}2 & - 3 & 29 \\ - 2 & 5 & - 15 \\ 3 & - 1 & - 11\end{vmatrix}\]
\[ = 2( - 55 - 15) + 3(22 + 45) + 29(2 - 15)\]
\[ = 2( - 70) + 3(67) + 29( - 13)\]
\[ = - 316\]
Now,
\[x = \frac{D_1}{D} = \frac{158}{79} = 2\]
\[y = \frac{D_2}{D} = \frac{- 237}{79} = - 3\]
\[z = \frac{D_3}{D} = \frac{- 316}{79} = - 4\]
\[ \therefore x = 2, y = - 3\text{ and }z = - 4\]
APPEARS IN
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
Prove that
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in