Advertisements
Advertisements
Question
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
Solution
Given: 2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
\[D = \begin{vmatrix}2 & - 3 & - 4 \\ - 2 & 5 & - 1 \\ 3 & - 1 & 5\end{vmatrix}\]
\[ = 2(25 - 1) + 3( - 10 + 3) - 4(2 - 15)\]
\[ = 2(24) + 3( - 7) - 4( - 13)\]
\[ = 79\]
\[ D_1 = \begin{vmatrix}29 & - 3 & - 4 \\ - 15 & 5 & - 1 \\ - 11 & - 1 & 5\end{vmatrix}\]
\[ = 29(25 - 1) + 3( - 75 - 11) - 4(15 + 55)\]
\[ = 29(24) + 3( - 86) - 4(70)\]
\[ = 158\]
\[ D_2 = \begin{vmatrix}2 & 29 & - 4 \\ - 2 & - 15 & - 1 \\ 3 & - 11 & 5\end{vmatrix}\]
\[ = 2( - 75 - 11) - 29( - 10 + 3) - 4(22 + 45)\]
\[ = 2( - 86) - 29( - 7) - 4(67)\]
\[ = - 237\]
\[ D_3 = \begin{vmatrix}2 & - 3 & 29 \\ - 2 & 5 & - 15 \\ 3 & - 1 & - 11\end{vmatrix}\]
\[ = 2( - 55 - 15) + 3(22 + 45) + 29(2 - 15)\]
\[ = 2( - 70) + 3(67) + 29( - 13)\]
\[ = - 316\]
Now,
\[x = \frac{D_1}{D} = \frac{158}{79} = 2\]
\[y = \frac{D_2}{D} = \frac{- 237}{79} = - 3\]
\[z = \frac{D_3}{D} = \frac{- 316}{79} = - 4\]
\[ \therefore x = 2, y = - 3\text{ and }z = - 4\]
APPEARS IN
RELATED QUESTIONS
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Prove that :
Prove that :
5x + 7y = − 2
4x + 6y = − 3
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
Write the value of
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.