English

​Solve the Following Determinant Equation: ∣ ∣ ∣ ∣ 1 1 X P + 1 P + 1 P + X 3 X + 1 X + 2 ∣ ∣ ∣ ∣ = 0 - Mathematics

Advertisements
Advertisements

Question

​Solve the following determinant equation:

\[\begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix} = 0\]

Solution

\[\text{ Let }∆ = \begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix}\] 

\[ = \begin{vmatrix}1 & 1 & x \\ p & p & p \\ 3 & x + 1 & x + 2\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\] 

\[ = p\begin{vmatrix}1 & 1 & x \\ 1 & 1 & 1 \\ 3 & x + 1 & x + 2\end{vmatrix}\] 

\[ = p\begin{vmatrix}1 & 1 & x \\ 1 & 1 & 1 \\ 2 & x & 2\end{vmatrix} \left[\text{ Applying }R_3 \to R_3 - R_1 \right]\] 

\[ = p\begin{vmatrix}0 & 1 & x \\ 0 & 1 & 1 \\ 2 - x & x & 2\end{vmatrix} \left[\text{ Applying }C_1\to C_1 - C_2 \right]\] 

\[ = p\left\{ \left( 2 - x \right) \times \begin{vmatrix}1 & x \\ 1 & 1\end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\] 

\[ = p\left( 2 - x \right)\left( 1 - x \right) = 0\] 

\[x = 1, 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 52.8 | Page 61

RELATED QUESTIONS

Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


Find values of k, if area of triangle is 4 square units whose vertices are 
(k, 0), (4, 0), (0, 2)


5x + 7y = − 2
4x + 6y = − 3


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]


Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]




The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×