Advertisements
Advertisements
Question
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
Options
0
1
x
2x
Solution
\[\begin{vmatrix} x + 2 & x + 3 & x + 2a\\x + 3 & x + 4 & x + 2b\\x + 4 & x + 5 & x + 2c \end{vmatrix}\]
\[ = \begin{vmatrix} 0 & 0 & 2\left( a + c - 2b \right)\\x + 3 & x + 4 & x + 2b\\x + 4 & x + 5 & x + 2c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_3 - R_2 , R_1 \to R_1 - R_2 \right]\]
\[ = \begin{vmatrix} 0 & 0 & 0\\x + 3 & x + 4 & x + 2b\\x + 4 & x + 5 & x + 2c \end{vmatrix} \left[ \because\text{ a, b, c are in A . P . }\right]\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Show that x = 2 is a root of the equation
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
2x + 3y = 10
x + 6y = 4
5x + 7y = − 2
4x + 6y = − 3
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
The value of the determinant
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.