Advertisements
Advertisements
Question
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solution
\[\text{ Let }\frac{1}{x}\text{ be }a,\frac{1}{y}\text{ be }b \text{ and}\frac{1}{z}\text{ be }c.\]
Here,
\[A = \begin{bmatrix}2 & - 3 & 3 \\ 1 & 1 & 1 \\ 3 & - 1 & 2\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & - 3 & 3 \\ 1 & 1 & 1 \\ 3 & - 1 & 2\end{vmatrix}\]
\[ = 2\left( 2 + 1 \right) + 3\left( 2 - 3 \right) + 3( - 1 - 3)\]
\[ = 6 - 3 - 12\]
\[ = - 9\]
\[ {\text{ Let }C}_{ij} {\text{be the cofactors of the elements a}}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & 1 \\ - 1 & 2\end{vmatrix} = 3, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 1 \\ 3 & 2\end{vmatrix} = 1 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 1 \\ 3 & - 1\end{vmatrix} = - 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 3 & 3 \\ - 1 & 2\end{vmatrix} = 3 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 3 \\ 3 & 2\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & - 3 \\ 3 & - 1\end{vmatrix} = - 7\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 3 & 3 \\ 1 & 1\end{vmatrix} = - 6 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 3 \\ 1 & 1\end{vmatrix} = 1, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & - 3 \\ 1 & 1\end{vmatrix} = 5\]
\[adj A = \begin{bmatrix}3 & 1 & - 4 \\ 3 & - 5 & - 7 \\ - 6 & 1 & 5\end{bmatrix}^T \]
\[ = \begin{bmatrix}3 & 3 & - 6 \\ 1 & - 5 & 1 \\ - 4 & - 7 & 5\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 9}\begin{bmatrix}3 & 3 & - 6 \\ 1 & - 5 & 1 \\ - 4 & - 7 & 5\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{- 9}\begin{bmatrix}3 & 3 & - 6 \\ 1 & - 5 & 1 \\ - 4 & - 7 & 5\end{bmatrix}\begin{bmatrix}10 \\ 10 \\ 13\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{- 9}\begin{bmatrix}30 + 30 - 78 \\ 10 - 50 + 13 \\ - 40 - 70 + 65\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{- 9}\begin{bmatrix}- 18 \\ - 27 \\ - 45\end{bmatrix}\]
\[ \Rightarrow x = \frac{1}{a} = \frac{- 9}{- 18}, y = \frac{1}{b} = \frac{- 9}{- 27}\text{ and }z = \frac{1}{c} = \frac{- 9}{- 45}\]
\[ \therefore x = \frac{1}{a} = \frac{1}{2}, y = \frac{1}{b} = \frac{1}{3}\text{ and }z = \frac{1}{c} = \frac{1}{5}\]
APPEARS IN
RELATED QUESTIONS
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
Prove that :
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.