Advertisements
Advertisements
Question
Prove that :
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac\\ab & b^2 + bc & c^2 \end{vmatrix}\]
\[\Delta = abc \begin{vmatrix} a & c & a + c\\a + b & b & a\\b & b + c & c \end{vmatrix} \left[\text{ Taking out a, b and c common from }C_1 , C_2\text{ and }C_3 \right]\]
\[ = abc \begin{vmatrix} a & c & 0\\a + b & b & - 2b\\b & b + c & - 2b \end{vmatrix} \left[\text{ Applying }C_3 \to C_3 - C_2 - C_1 \right]\]
\[ = \left( abc \right)\left( - 2b \right) \begin{vmatrix} a & c & 0\\a + b & b & 1\\b & b + c & 1 \end{vmatrix}\left[\text{ Taking ( - 2b) common from }C_3 \right]\]
\[ = \left( abc \right)\left( - 2b \right) \begin{vmatrix} a & c & 0\\a & - c & 0\\b & b + c & 1 \end{vmatrix} \left[\text{ Applying }R_2 \to \hspace{0.167em} R_2 - R_3 \right]\]
\[ = \left( abc \right)\left( - 2b \right) \times 1\begin{vmatrix} a & c \\a & - c \end{vmatrix} \left[\text{ Expanding along }C_3 \right]\]
\[ = \left( abc \right)\left( - 2b \right)\left( - 2ac \right)\]
\[ = 4 a^2 b^2 c^2 \]
\[ = RHS\]
APPEARS IN
RELATED QUESTIONS
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Show that x = 2 is a root of the equation
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the value of
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
The value of the determinant
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
System of equations x + y = 2, 2x + 2y = 3 has ______
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.