English

Prove that : ∣ ∣ ∣ ∣ ∣ z x y z 2 x 2 y 2 z 4 x 4 y 4 ∣ ∣ = ∣ ∣ x y z x 2 y 2 z 2 x 4 y 4 z 4 ∣ ∣ = ∣ ∣ x 2 y 2 z 2 x 4 y 4 z 4 x y z ∣ ∣ ∣ ∣ ∣ = x y z ( x − y ) ( y − z ) ( z − x ) ( x + y + z ) . - Mathematics

Advertisements
Advertisements

Question

Prove that :

\[\begin{vmatrix}z & x & y \\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4\end{vmatrix} = \begin{vmatrix}x & y & z \\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4\end{vmatrix} = \begin{vmatrix}x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z\end{vmatrix} = xyz \left( x - y \right) \left( y - z \right) \left( z - x \right) \left( x + y + z \right) .\]

 

Solution

\[Let \Delta_1 = \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}, \Delta_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}, \Delta_3 = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z \end{vmatrix} \text{ and }\Delta_4 = xyz\left( x - y \right)\left( y - z \right)\left( z - x \right) \left( x + y + z \right)\]
Now,
\[ \Delta_{1 =} \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}\]
Using the property that if two rows ( or columns ) of a determinant are interchanged, the value of the determinant becomes negetive, we get

\[ \Rightarrow \Delta_1 = \left( - 1 \right) \begin{vmatrix} x & z & y\\ x^2 & z^2 & y^2 \\ x^4 & z^4 & y^4 \end{vmatrix} \left[ \because C_1 \leftrightarrow C_2 \right]\]
\[ = \left( - 1 \right)\left( - 1 \right)\begin{vmatrix} x & y & z\\x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} \left[ \because C_2 \leftrightarrow C_3 \right]\]

\[ = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} = \Delta_2 . . . (1)\]
\[ = \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\x & y & z\\ x^4 & y^4 & z^4 \end{vmatrix} \left[\text{ Applying }R_1 \leftrightarrow R_2 \right]\]
\[ = \left( - 1 \right) \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} \left[\text{ Applying }R_2 \leftrightarrow R_3 \right] \]
\[ = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} = \Delta_3 . . . (2)\]
\[Thus, \]

\[ \Delta_1 = \Delta_2 = \Delta_3 \left[\text{ From eqs }. (1)\text{ and }(2) \right]\]
\[∆_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}\] 
\[ = xyz \begin{vmatrix} 1 & 1 & 1\\x & y^{} & z\\ x^3 & y^3 & z^3 \end{vmatrix} \left[\text{ Taking out common factor x from } C_{1 ,}\text{ y from }C_2\text{ and z from }C_3 \right]\] 
\[ = xyz\begin{vmatrix} 0 & 0 & 1\\ x - y & y - z^{} & z\\ x^3 - y^3 & y^3 - z^3 & z^3 \end{vmatrix} \left[\text{ Applying }C \to C_1 \hspace{0.167em} - C_2\text{ and }C_2 \to C_2 - C_3 \right]\] 
\[ = xyz\left( x - y \right) \left( y - z \right) \begin{vmatrix} 0 & 0 & 1\\1 & 1 & z\\ x^2 + 2xy + y^2 & y^2 + 2yz + z^2 & z^3 \end{vmatrix} \left[ \because \left( a^3 - b^3 \right) = \left( a - b \right)\left( a^2 + ab + b^2 \right) \right] \left[\text{ Taking out common factor }\left( x - y \right)\text{ from }C_1\text{ and }\left( y - z \right)\text{ from }C_2 \right]\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ 1 \times \begin{vmatrix} 1 & 1 \\ x^2 + xy + y^2 & y^2 + yz + z^2 \end{vmatrix} \right\} \left[\text{ Expanding along }R_1 \right]\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y^2 + yz + z^2 - x^2 - xy - y^2 \right\}\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ yz - xy + z^2 - x^2 \right\}\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y\left( z - x \right) + \left( z - x \right)\left( z + x \right) \right\}\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( y + x + z \right)\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( x + y + z \right)\] 
\[ = ∆_4 \] 
\[Thus, \] 
\[ ∆_1 = ∆_2 = ∆_3 = ∆_4 \] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 19 | Page 59

RELATED QUESTIONS

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & x & x \\ x & x + a & x \\ x & x & x + a\end{vmatrix} = 0, a \neq 0\]

 


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]


If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.

 

Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 


The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Using the matrix method, solve the following system of linear equations:

`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×