Advertisements
Advertisements
Question
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Solution
Here,
\[A = \begin{bmatrix}2 & 6 & 0 \\ 3 & 0 & - 1 \\ 2 & - 1 & 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & 6 & 0 \\ 3 & 0 & - 1 \\ 2 & - 1 & 1\end{vmatrix}\]
\[ = 2\left( 0 - 1 \right) - 6\left( 3 + 2 \right) + 0( - 3 + 0)\]
\[ = - 2 - 30\]
\[ = - 32\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & - 1 \\ - 1 & 1\end{vmatrix} = - 1 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & - 1 \\ 2 & 1\end{vmatrix} = - 5 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 0 \\ 2 & - 1\end{vmatrix} = - 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}6 & 0 \\ - 1 & 1\end{vmatrix} = - 6 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 0 \\ 2 & 1\end{vmatrix} = 2 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 6 \\ 2 & - 1\end{vmatrix} = 14\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}6 & 0 \\ 0 & - 1\end{vmatrix} = - 6 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 0 \\ 3 & - 1\end{vmatrix} = 2 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 6 \\ 3 & 0\end{vmatrix} = - 18\]
\[adj A = \begin{bmatrix}- 1 & - 5 & - 3 \\ - 6 & 2 & 14 \\ - 6 & 2 & - 18\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 1 & - 6 & - 6 \\ - 5 & 2 & 2 \\ - 3 & 14 & - 18\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 32}\begin{bmatrix}- 1 & - 6 & - 6 \\ - 5 & 2 & 2 \\ - 3 & 14 & - 18\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 32}\begin{bmatrix}- 1 & - 6 & - 6 \\ - 5 & 2 & 2 \\ - 3 & 14 & - 18\end{bmatrix}\begin{bmatrix}2 \\ - 8 \\ - 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 32}\begin{bmatrix}- 2 + 48 + 18 \\ - 10 - 16 - 6 \\ - 6 - 112 + 54\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 32}\begin{bmatrix}64 \\ - 32 \\ - 64\end{bmatrix}\]
\[ \Rightarrow x = \frac{64}{- 32}, y = \frac{- 32}{- 32}\text{ and }z = \frac{- 64}{- 32}\]
\[ \therefore x = - 2, y = 1\text{ and }z = 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Show that
Solve the following determinant equation:
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Prove that :
x+ y = 5
y + z = 3
x + z = 4
x + 2y = 5
3x + 6y = 15
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.