Advertisements
Advertisements
Question
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
Solution
The given system of equations can be expressed as follows:
\[AX = B \]
Here,
\[ A = \begin{bmatrix}2 & 3 \\ 6 & 9\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{5}{10}\]
Now,
\[\left| A \right| = \begin{vmatrix}2 & 3 \\ 6 & 9\end{vmatrix}\]
\[ = \left( 18 - 18 \right)\]
\[ = 0\]
\[ {\text{ Let }C}_{ij} { \text{ be the cofactors of the elements a }}_{ij}\text{ in }A =\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \left( 9 \right) = 9 , C_{12} = \left( - 1 \right)^{1 + 2} \left( 6 \right) = - 6 \]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \left( 3 \right) = - 3, C_{22} = \left( - 1 \right)^{2 + 2} \left( 2 \right) = 2\]
\[adj A = \begin{bmatrix}9 & - 6 \\ - 3 & 2\end{bmatrix}^T \]
\[ = \begin{bmatrix}9 & - 3 \\ - 6 & 2\end{bmatrix}\]
\[\left( adj A \right) B = \begin{bmatrix}9 & - 3 \\ - 6 & 2\end{bmatrix}\binom{5}{10}\]
\[ = \binom{45 - 30}{ - 30 + 20}\]
\[ = \binom{15}{ - 10} \neq 0\]
Hence, the given system of equations is inconsistent.
APPEARS IN
RELATED QUESTIONS
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Prove that
9x + 5y = 10
3y − 2x = 8
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
For what value of x, the following matrix is singular?
Write the value of the determinant
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
The value of the determinant
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?