Advertisements
Advertisements
Question
Solution
Let
Now,
\[∆ = \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix}\]
\[ = \begin{vmatrix}p & b & c \\ 0 & q - b & c - r \\ a & b & r\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ = p\left[ r\left( q - b \right) - b\left( c - r \right) \right] + a\left[ b\left( c - r \right) - c\left( q - b \right) \right] \left[\text{ Expanding along first column }\right]\]
\[ = pr\left( q - b \right) + pb\left( r - c \right) - ab\left( r - c \right) - ac\left( q - b \right)\]
\[ = \left( pr - ac \right)\left( q - b \right) + b\left( p - a \right)\left( r - c \right)\]
\[\text{ Since, }∆ = 0 . \]
\[ \therefore \left( pr - ac \right)\left( q - b \right) + b\left( p - a \right)\left( r - c \right) = 0\]
\[ \Rightarrow \frac{pr - ac}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{pr - ar + ar - ac}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{r\left( p - a \right) + a\left( r - c \right)}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{r}{r - c} + \frac{a}{p - a} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = \frac{p}{p - a} + \frac{q}{q - b} - \frac{a}{p - a} - \frac{b}{q - b}\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = \frac{p - a}{p - a} + \frac{q - b}{q - b}\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = 2\]
\[\text{Hence, the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}\text{ is }2 .\]
APPEARS IN
RELATED QUESTIONS
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Show that x = 2 is a root of the equation
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.