Advertisements
Advertisements
Question
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Solution
\[\text{ Let }\Delta = \begin{vmatrix} b + c c + a a + b\\c + a a + b b + c\\a + b b + c c + a \end{vmatrix}\]
\[ = \begin{vmatrix} 2( a + b + c ) & 2( a + b + c ) & 2( a + b + c)\\c + a & a + b & b + c\\a + b & b + c & c + a \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2 + R_3 \right]\]
\[ = 2( a + b + c )\begin{vmatrix}1 & 1 & 1 \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix}\]
\[ = 2( a + b + c )\begin{vmatrix} 1 & 0 & 0\\c + a & b - c & b - a\\a + b & c - a & c - b \end{vmatrix}\left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\]
\[ = 2\left( a + b + c \right)\left\{ 1\begin{vmatrix}b - c & b - a \\ c - a & c - b\end{vmatrix} \right\}\]
\[ = 2\left( a + b + c \right)\left\{ \left( b - c \right)\left( c - b \right) - \left( b - a \right)\left( c - a \right) \right\}\]
\[ = - 2\left( a + b + c \right)\left\{ a^2 + b^2 + c^2 - ab - bc - ca \right\}\]
\[ = - \left( a + b + c \right)\left\{ 2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca \right\}\]
\[ = - \left( a + b + c \right)\left\{ \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 \right\}\]
\[\text{ But }\Delta = 0 \left[\text{ Given }\right]\]
\[ \Rightarrow - \left( a + b + c \right)\left\{ \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 \right\} = 0\]
\[ \Rightarrow\text{ Either }\left( a + b + c \right) = 0 or \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 = 0\]
\[ \Rightarrow \left( a + b + c \right) = 0\text{ or }a = b = c\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Show that x = 2 is a root of the equation
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
If \[x, y \in \mathbb{R}\], then the determinant
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.