Advertisements
Advertisements
Question
Prove that :
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} a^2 & a^2 - \left( b - c \right)^2 & bc\\ b^2 & b^2 - \left( c - a \right)^2 & ca\\ c^2 & c^2 - \left( a - b \right)^2 & ab \end{vmatrix}\]
\[ \Rightarrow ∆ = \begin{vmatrix} a^2 & - \left( b - c \right)^2 & bc\\ b^2 & - \left( c - a \right)^2 & ca\\ c^2 & - \left( a - b \right)^2 & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1 \right]\]
\[ = \left( - 1 \right)\begin{vmatrix} a^2 & \left( b - c \right)^2 & bc\\ b^2 & \left( c - a \right)^2 & ca\\ c^2 & \left( a - b \right)^2 & ab \end{vmatrix}\]
\[ = - \begin{vmatrix} a^2 & b^2 + c^2 & bc\\ b^2 & c^2 + a^2 & ca\\ c^2 & a^2 + b^2 & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - 2 C_3 \right]\]
\[ = - \begin{vmatrix} a^2 + b^2 + c^2 & b^2 + c^2 & bc\\ b^2 + c^2 + a^2 & c^2 + a^2 & ca\\ c^2 + a^2 + b^2 & a^2 + b^2 & ab \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 \right]\]
\[ = - \left( a^2 + b^2 + c^2 \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\1 & c^2 + a^2 & ca\\1 & a^2 + b^2 & ab \end{vmatrix}\]
\[ = - \left( a^2 + b^2 + c^2 \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & \left( c^2 + a^2 \right) - \left( b^2 + c^2 \right) & ca - bc\\0 & \left( a^2 + b^2 \right) - \left( b^2 + c^2 \right) & ab - bc \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( \left( a^2 + b^2 + c^2 \right) \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & a^2 - b^2 & c\left( a - b \right)\\0 & a^2 - c^2 & b \left( a - c \right) \end{vmatrix}\]
\[ = - \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right)\left( a - c \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & a + b^{} & c\\0 & a^{} + c^{} & b \end{vmatrix} \left[\text{ Taking }\left( a - b \right)\text{ common from }R_2\text{ and }\left( a - c \right)\text{ common from }R_3 \right]\]
\[ = \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right)\left( c - a \right) \times \left\{ 1 \times \begin{vmatrix} a + b^{} & c\\ a^{} + c^{} & b \end{vmatrix} \right\} \left[ \because \left( c - a \right) = - \left( a - c \right) \right] \left[\text{ Expanding along }C_1 \right]\]
\[ = \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right) \left( c - a \right) \left( ab + b^2 - ac - c^2 \right) \]
\[= \left( a^2 + b^2 + c^2 \right)\left( a - b \right)\left( c - a \right)\left\{ a\left( b - c \right) + \left( b + c \right)\left( b - c \right) \right\}\]
\[ = \left( a - b \right)\left( c - a \right)\left( b - c \right)\left( a + b + c \right)\left( a^2 + b^2 + c^2 \right)\]
= RHS
Hence proved
APPEARS IN
RELATED QUESTIONS
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Solve the following determinant equation:
Prove that :
Prove that :
3x + y = 19
3x − y = 23
x + 2y = 5
3x + 6y = 15
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
If \[x, y \in \mathbb{R}\], then the determinant
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.