Advertisements
Advertisements
Question
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Solution
`abs A = abs ((2,-3,5),(3,2,-4),(1,1,-2))`
`= 2 [2 xx (-2) - 1 xx (-4)] - (-3) [3 xx (-2) - (1) xx (- 4)] + 5 [ 3 xx 1 - 1 xx 2]`
`= 2 [-4 + 4] + 3 [-6 + 4] + 5 [3 - 2]`
`= 0 + 3 xx (-2) + 5 xx 1`
`= -6 + 5 = -1 ne 0`
`therefore A^-1` can be known,
Cofactors of the elements of `abs A`
`A_11 = abs ((2,-4),(1,-2)) = -4 + 4 = 0`
`A_12 = - abs ((3,-4),(1,-2)) = - (-6 + 4) = 2`
`A_13 = abs ((3,2),(1,1)) = 3 - 2 = 1`
`A_21 = - abs ((-3,5),(1,-2)) = - (6 - 5) = -1`
`A_22 = abs ((2,5),(1,-2)) = -4 - 5 = -9`
`A_23 = - abs ((2,-3),(1,1)) = - (2 + 3) = - 5`
`A_31 = abs ((-3,5),(2,-4)) = 12 - 10 = 2`
`A_32 = - abs ((2,5),(3,-4)) = - (-8 - 15) = 23`
`A_33 = abs ((2,-3),(3,2)) = 4 + 9 = 13`
The cofactor matrix of the elements of `therefore abs A` is C = `[(0,2,1),(-1,-9,-5),(2,23,13)]`
`therefore adj A = [(0,2,1),(-1,-9,-5),(2,23,13)] [(0,-1,2),(2,-9,23),(1,-5,13)]`
`therefore A^-1 = adj A/abs A`
`= - [(0,-1,2),(2,-9,23),(1,-5,13)] = [(0,1,-2),(-2,9,-23),(-1,5,-13)]`
Writing the given equation in the form AX = B,
Or `A = [(2,-3,5),(3,2,-4),(1,1,-2)], X = [(x),(y),(z)], B = [(11),(-5),(-3)]`
`therefore X = A^-1 B`
`[(x),(y),(z)] = [(0,1,-2),(-2,9,-23),(-1,5,-13)] [(11),(-5),(-3)] = [(0 - 5 + 6),(-22 - 45 + 69),(-11 - 25 + 39)] = [(1),(2),(3)]`
`=> x = 1, y = 2, z = 3`
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
2x − y = − 2
3x + 4y = 3
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.