English

I F δ = ∣ ∣ ∣ ∣ ∣ 1 X X 2 1 Y Y 2 1 Z Z 2 ∣ ∣ ∣ ∣ ∣ , δ 1 = ∣ ∣ ∣ ∣ 1 1 1 Y Z Z X X Y X Y Z ∣ ∣ ∣ ∣ , Then Prove that δ + δ 1 = 0 - Mathematics

Advertisements
Advertisements

Question

\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]

Solution

\[∆ + ∆_1 = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix} + \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix}\]

\[ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix} + \begin{vmatrix}1 & yz & x \\ 1 & zx & y \\ 1 & xy & z\end{vmatrix} \left[\text{ Interchanging rows and coloumns in }∆_1 \right]\]

\[ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix} - \begin{vmatrix}1 & x & yz \\ 1 & y & zx \\ 1 & z & xy\end{vmatrix} \left[\text{ Applying }C_2 \leftrightarrow C_3\text{ in }∆_1 \right]\]

\[ = \begin{vmatrix}1 & x & x^2 \\ 0 & y - x & y^2 - x^2 \\ 0 & z - x & z^2 - x^2\end{vmatrix} - \begin{vmatrix}1 & x & yz \\ 0 & y - x & zx - yz \\ 0 & z - x & xy - yz\end{vmatrix} \left[ \text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - R_1 \right]\]

\[ = \left( y - x \right)\left( z - x \right)\begin{vmatrix}1 & x & x^2 \\ 0 & 1 & y + x \\ 0 & 1 & z + x\end{vmatrix} - \left( y - x \right)\left( z - x \right)\begin{vmatrix}1 & x & yz \\ 0 & 1 & - z \\ 0 & 1 & - y\end{vmatrix} \left[\text{ Taking }\left( y - x \right) \text{ common from }R_2\text{ and }\left( z - x \right)\text{ common from }R_3 \right]\]

\[ = \left( y - x \right)\left( z - x \right)\left( z + x - y - x \right) - \left( y - x \right)\left( z - x \right)\left( - y + z \right) \left[\text{ Expanding along first column }\right]\]

\[ = \left( y - x \right)\left( z - x \right)\left( z - y \right)\left( 1 - 1 \right)\]

\[ = 0\]

\[ \therefore ∆ + ∆_1 = 0 .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 10 | Page 58

RELATED QUESTIONS

Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


For what value of x the matrix A is singular? 
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Prove that :

\[\begin{vmatrix}z & x & y \\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4\end{vmatrix} = \begin{vmatrix}x & y & z \\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4\end{vmatrix} = \begin{vmatrix}x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z\end{vmatrix} = xyz \left( x - y \right) \left( y - z \right) \left( z - x \right) \left( x + y + z \right) .\]

 


Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 


Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


System of equations x + y = 2, 2x + 2y = 3 has ______


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×