Advertisements
Advertisements
Question
Prove that
Solution
\[\text{ Let LHS }= ∆ = \begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\2ab & b^2 & a^2 \end{vmatrix}\]
\[ = a^2 \begin{vmatrix} a^2 & 2ab \\ b^2 & a^2 \end{vmatrix} - \left( 2ab \right) \begin{vmatrix} b^2 & 2ab \\2ab & a^2 \end{vmatrix} + b^2 \begin{vmatrix} b^2 & a^2 \\2ab & b^2 \end{vmatrix} \left[\text{ Expanding }\right]\]
\[ = a^2 \left( a^4 - 2a b^3 \right) - \left( 2ab \right)\left( b^2 a^2 - 4 a^2 b^2 \right) + b^2 \left( b^4 - 2 a^3 b \right)\]
\[ = a^6 - 2 a^3 b^3 - 2 a^3 b^3 + 8 a^3 b^3 + b^6 - 2 a^3 b^3 \]
\[ = a^6 + 2 a^3 b^3 + b^6 \]
\[ = \left( a^3 \right)^2 + 2 a^3 b^3 + \left( b^3 \right)^2 \]
\[ = \left( a^3 + b^3 \right)^2 \]
\[ = RHS\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Show that
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
Prove that :
Prove that :
2x − y = − 2
3x + 4y = 3
Given: x + 2y = 1
3x + y = 4
3x + y = 5
− 6x − 2y = 9
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\]
\[ x + \lambda y + 2z = 0\]
\[ 2x + \lambda z = 0\]
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.