Advertisements
Advertisements
Question
Options
4
6
8
none of these
Solution
(a) 4
\[D_k = \begin{vmatrix} 1 & n & n\\ 2k & n^2 + n + 2 & n^2 + n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ = \begin{vmatrix} 1 & n & n\\ 1 & n + 2 & - 2\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ \sum\nolimits_{k = 1}^n D_k = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 1 & n^2 & n^2 + n + 2 \end{vmatrix} + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 3 & n^2 & n^2 + n + 2 \end{vmatrix} + . . . + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ n & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ \sum\nolimits_{k = 1}^n D_k = 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 1\left( n\left( - 2 - n \right) - 2n \right) + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 2\left( n\left( - 2 - n \right) - 2n \right) + . . . + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + n\left( n\left( - 2 - n \right) - 2n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( 1 + 3 + 5 + 7 + . . . + n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( n^2 \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = 2 n^2 + 4n\]
\[ \Rightarrow 2 n^2 + 4n = 48\]
\[ \Rightarrow \left( n - 6 \right)\left( n - 4 \right) = 0\]
\[ \Rightarrow n = 4\]
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
Prove that :
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.