Advertisements
Advertisements
Question
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
Solution
Let the award money given for Honesty, Regularity and Hard work be x, y and z respectively.
Since total cash award is Rs 6,000.
∴ x + y + z = Rs 6,000 ...(1)
Three times the award money for Hard work and Honesty is Rs 11,000.
∴ x + 3 z = Rs 11,000
⇒ x + 0.y + 3 z = Rs 11,000 ...(2)
Award money for Honesty and Hard work is double the one given for regularity.
∴ x + z = 2y
⇒ x − 2y + z = 0 ...(3)
The above system can be written in matrix form as,
`[(1,1,1),(1,0,3),(1,-2,1)][(x),(y),(z)]=[(6000),(11000),(0)]`
Or AX = B, where
`A=[(1,1,1),(1,0,3),(1,-2,1)], X=[(x),(y),(z)] and B =[(6000),(11000),(0)]`
`|A|=6!=0`
Thus, A is non-singular. Hence, it is invertible.
Adj A = `[(6,-3,3),(2,0,-2),(-2,3,-1)]`
`thereforeA^-1=1/|A|(adjA)=1/6[(6,-3,3),(2,0,-2),(-2,3,-1)]`
`X = A^-1B=1/6[(6,-3,3),(2,0,-2),(-2,3,-1)][(6000),(11000),(0)]`
`=>[(x),(y),(z)]=[(500),(2000),(3500)]`
`Hence, x= 500, y=2000, andz=3500`
Thus, award money given for Honesty, Regularity and Hard work are Rs 500, Rs 2000 and Rs 3500 respectively.
School can include sincerity for awards.
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
3x + ay = 4
2x + ay = 2, a ≠ 0
5x + 7y = − 2
4x + 6y = − 3
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Write the value of the determinant
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.