English

2x + Y − 2z = 4 X − 2y + Z = − 2 5x − 5y + Z = − 2 - Mathematics

Advertisements
Advertisements

Question

2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2

Solution

Using the equations we get
\[D = \begin{vmatrix}2 & 1 & - 2 \\ 1 & - 2 & 1 \\ 5 & - 5 & 1\end{vmatrix}\] 
\[ \Rightarrow 2\left( - 2 + 5 \right) - 1\left( 1 - 5 \right) - 2\left( - 5 + 10 \right) = 0\] 
\[ D_1 = \begin{vmatrix}4 & 1 & - 2 \\ - 2 & - 2 & 1 \\ - 2 & - 5 & 1\end{vmatrix}\] 
\[ \Rightarrow 4\left( - 2 + 5 \right) - 1\left( - 2 + 2 \right) - 2\left( 10 - 4 \right) = 0\] 
\[ D_2 = \begin{vmatrix}2 & 4 & - 2 \\ 1 & - 2 & 1 \\ 5 & - 2 & 1\end{vmatrix}\] 
\[ \Rightarrow 2\left( - 2 + 2 \right) - 4\left( 1 - 5 \right) - 2\left( - 2 + 10 \right) = 0\] 
\[ D_3 = \begin{vmatrix}2 & 1 & 4 \\ 1 & - 2 & - 2 \\ 5 & - 5 & - 2\end{vmatrix}\] 
\[ \Rightarrow 2\left( 4 - 10 \right) - 1\left( - 2 + 10 \right) + 4\left( - 5 + 10 \right) = 0\] 
\[\therefore D = D_1 = D_2 = 0\]
Hence, the system of linear equations has infinitely many solutions.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.4 [Page 85]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.4 | Q 29 | Page 85

RELATED QUESTIONS

Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.

 

Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


Show that

\[\begin{vmatrix}x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c\end{vmatrix} =\text{ 0 where a, b, c are in A . P .}\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix} = 0\]

If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


3x + y = 19
3x − y = 23


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12


Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×