English

2x − Y + 2z = 0 5x + 3y − Z = 0 X + 5y − 5z = 0 - Mathematics

Advertisements
Advertisements

Question

2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0

Solution

Here,
2x − y + 2z = 0                 ...(1)
5x + 3y − z = 0                 ...(2)
x + 5y − 5z = 0                 ...(3)
The given system of homogeneous equations can be written in matrix form as follows:
\[\begin{bmatrix}2 & - 1 & 2 \\ 5 & 3 & - 1 \\ 1 & 5 & - 5\end{bmatrix} \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[AX = O\]
Here, 
\[A = \begin{bmatrix}2 & - 1 & 2 \\ 5 & 3 & - 1 \\ 1 & 5 & - 5\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }O = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
Now,
\[ \left| A \right| = \begin{vmatrix}2 & - 1 & 2 \\ 5 & 3 & - 1 \\ 1 & 5 & - 5\end{vmatrix}\]
\[ = 2\left( - 15 + 5 \right) + 1\left( - 25 + 1 \right) + 2(25 - 3)\]
\[ = - 20 - 24 + 44\]
\[ = 0\]
\[\therefore\left| A \right|\neq 0\]
So, the given systemof homogeneous equations has non-trivial solution.
\[\text{ Substituting z=k in eq. }(1)\hspace{0.167em} \text{ and eq. }(2),\text{ we get }\]
\[2x - y = - 2k \text{ and }5x + 3y = k\]
\[AX = B\]
Here,
\[A=\begin{bmatrix}2 & - 1 \\ 5 & 3\end{bmatrix}, X=\binom{x}{y}\text{ and }B = \binom{ - 2k}{k}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 5 & 3\end{bmatrix}\binom{x}{y} = \binom{ - 2k}{k}\]
\[\left| A \right|=\begin{vmatrix}2 & - 1 \\ 5 & 3\end{vmatrix}\]
\[ =\left( 3 \times 2 + 1 \times 5 \right)\]
\[ =11\]
\[So, A^{- 1}\text{ exists . }\]
We have
\[adjA=\begin{bmatrix}3 & 1 \\ - 5 & 2\end{bmatrix}\]
\[ A^{- 1} =\frac{1}{\left| A \right|}adjA\]
\[ \Rightarrow A^{- 1} = \frac{1}{11}\begin{bmatrix}3 & 1 \\ - 5 & 2\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{11}\begin{bmatrix}3 & 1 \\ - 5 & 2\end{bmatrix}\binom{ - 2k}{k}\]
\[ = \frac{1}{11}\binom{ - 6k + k}{10k + 2k}\]
\[\text{ Thus },x=\frac{- 5k}{11},y=\frac{12k}{11}\text{ and }z=k\left( \text{ where k is any real number }\right)\text{ satisfy the given system of equations.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.2 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.2 | Q 2 | Page 20

RELATED QUESTIONS

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


2x − y = − 2
3x + 4y = 3


Given: x + 2y = 1
            3x + y = 4


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is


Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×