Advertisements
Advertisements
Question
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solution
The given system can be written in matrix form as:
`[(3, 4, 7),(2, -1, 3),(1, 2, -3)][(x),(y),(z)] = [(14),(4),(0)]` or A X = B
A = `[(3, 4, 7),(2, -1, 3),(1, 2, -3)], X = [(x),(y),(z)] and B = [(14),(4),(0)]`
Now,
|A| = `3|(-1, 3),(2, -3)| -4|(2, 3),(1, -3)| + 7|(2, 3),(2, -3)|`
= 3(3 − 6) − 4(−6 − 3) + 7(4 + 1)
= −9 + 36 + 35
= 62
So, the above system has a unique solution, given by
X = A−1 B
Cofactors of A are:
C11 = (−1)1 + 1 3 − 6 = −3
C21 = (−1)2 + 1 − 12 − 14 = 26
C31 = (−1)3 + 1 12 + 7 = 19
C12 = (−1)1 + 2 − 6 − 3 = 9
C22 = (−1)2 + 1 − 3 − 7 = −10
C32 = (−1)3 + 1 9 − 14 = 5
C13 = (−1)1 + 2 4 + 1 = 5
C23 = (−1)2 + 1 6 − 4 = −2
C33 = (−1)3 + 1 − 3 − 8 = −11
adj A = `[(-3, 9, 5),(26, -5, -2),(19, 5, -11)]^T`
= `[(-3, 26, 19),(9, -16, 5),(5, -2, -11)]`
A−1 = `1/(|A|)`adj A
Now, X = A−1 B = `1/62[(-3, 26, 19),(9, -16, 5),(5, -2, -11)][(14),(4),(0)]`
X = `1/62[(-42 + 104 + 0),(126 - 64 + 0),(70 - 8 + 0)]`
X = `1/62[(-42 + 104 + 0),(126 - 64 + 0),(70 - 8 + 0)]`
X = `1/62 [(62),(62),(62)]`
C = `[(1),(1),(1)]`
Hence, X = 1, Y = 1 and Z = 1
APPEARS IN
RELATED QUESTIONS
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Prove that :
Prove that :
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
x + 2y = 5
3x + 6y = 15
Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\]
\[ x + \lambda y + 2z = 0\]
\[ 2x + \lambda z = 0\]
Write the value of the determinant
Write the value of
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.