Advertisements
Advertisements
Question
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
Solution
\[∆ = \begin{vmatrix}- a( b^2 + c^2 - a^2 ) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b( c^2 + a^2 - b^2 ) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c( a^2 + b^2 - c^2 )\end{vmatrix}\]
\[ = abc\begin{vmatrix}- b^2 - c^2 + a^2 & 2 b^2 & 2 c^2 \\ 2 a^2 & - c^2 - a^2 + b^2 & 2 c^2 \\ 2 a^2 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Taking out a, b and c common from }C_1 , C_2\text{ and }|C_3 \right]\]
\[ = abc\begin{vmatrix}a^2 + b^2 + c^2 & 2 b^2 & 2 c^2 \\ a^2 + b^2 + c^2 & - c^2 - a^2 + b^2 & 2 c^2 \\ a^2 + b^2 + c^2 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Applying }C_1\text{ to }C_1 + C_2 + C_3 \right]\]
\[ = abc( a^2 + b^2 + c^2 )\begin{vmatrix}1 & 2 b^2 & 2 c^2 \\ 1 & - c^2 - a^2 + b^2 & 2 c^2 \\ 1 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Taking out }a^2 + b^2 + c \text{ common from }C_1 \right]\]
\[ = abc( a^2 + b^2 + c^2 )\begin{vmatrix}1 & 2 b^2 & 2 c^2 \\ 0 & - c^2 - a^2 - b^2 & 0 \\ 0 & 0 & - a^2 - b^2 - c^2\end{vmatrix} \left[\text{ Applying }R_2 \text{ to }R_2 - R_1 \text{ and }R_3 \text{ to }R_3 - R_1 \right]\]
\[ = abc( a^2 + b^2 + c^2 )^3 \left[\text{ Expanding }\right]\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
2x − y = 17
3x + 5y = 6
2x + 3y = 10
x + 6y = 4
Given: x + 2y = 1
3x + y = 4
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
The value of the determinant
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\] lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?