Advertisements
Advertisements
Question
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Solution
A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`
A11 = (−1)1+1 M11 = `1|(0, -2),(0, 3)|` = 1(0 − 0) = 1 × 0 = 0
A12 = (−1)1+2 M12 = `1|(3, 0),(1, 0)|` = −1(9 + 2) = −11
A13 = (−1)1+3 M13 = `1|(3, 0)(1, 0)|` = 1(0 − 0) = 0
A21 = (−1)2+1 M21 = `-1|(-1, 2),(0, 3)|` = −1(−3 − 0) = 3
A22 = (−1)2+2 M22 = `1|(1, 2),(1, 3)|` = 1(3 − 2) = 1
A23 = (−1)2+3 M23 = `-1|(1, -1),(1, 0)|` = −1(0 + 1) = −1
A31 = (−1)3+1 M31 = `1|(1, -1),(1, 0)|` = 1(2 − 0) = 2
A32 = (−1)3+2 M32 = `-1|(1, 2),(3, -2)|` = −1(−2 − 6) = 8
A33 = (−1)3+3 M33 = `1|(1, -1),(3, 0)|` = 1(0 + 3) = 3
Hence, matrix of the co-factors is
`[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)] = [(0, -11, 0),(3, 1, -1),(2, 8, 3)]`
= `["A"_"ij"]_(3 xx 3)`
Now, adj A = `["A"_"ij"]_(3 xx 3)^"T"`
= `[(0, 3, 2),(-11, 1, 8),(0, -1, 3)]`
∴ A(adj A) = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)] [(0,3, 2),(-11,1,8),(0, -1, 3)]`
= `[(0 + 11 + 0, 3 - 1 - 2, 2 - 8 + 6),(0 + 0 + 0, 9 + 0 + 2, 6 + 0 - 6),(0 + 0 + 0, 3 + 0 - 3, 2 + 0 + 9)]`
= `[(11, 0, 0),(0, 11, 0),(0, 0, 11)]` .......(i)
(adj A)A = `[(0, 3, 2),(-11, 1, 8),(0, -1, 3)] [(1, -1, 2),(3, 0, -2),(1, 0, 3)]`
= `[(0 + 9 + 2, 0 + 0 + 0, 0 - 6 + 6),(-11 + 3 + 8, 11 + 0 + 0, -22 - 2 + 24),(0 - 3 + 3, 0 - 0 + 0, 0 + 2 + 9)]`
= `[(11, 0, 0,(0, 11, 0),(0 0 11)]` .......(ii)
From equations (i) and (ii), we get
A(adj A) = (adj A)A
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Show that
Solve the following determinant equation:
Solve the following determinant equation:
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.