English

Find the Area of the Triangle with Vertice at the Point: (−1, −8), (−2, −3) and (3, 2) - Mathematics

Advertisements
Advertisements

Question

Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)

Solution

=12|181231321| 

=12|181150321|[ Applying R2R2R1] 

=12|1811504100|[ Applying R3R3R1] 

=12|15410| 

=12|1020| 

=12(30)=15 square units 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.3 [Page 71]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.3 | Q 1.3 | Page 71

RELATED QUESTIONS

Find the value of a if [a-b2a+c2a-b3c+d]=[-15013]


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Evaluate the following determinant:

|x7x5x+1|


=|cosαcosβcosαsinβsinαsinβcosβ0sinαcosβsinαsinβcosα|


If A=[2521] and B=[4325] , verify that |AB| = |A| |B|.

 

Evaluate the following determinant:

|13927392719271327139|


Without expanding, show that the value of the following determinant is zero:

|143673543172|


Without expanding, show that the value of the following determinant is zero:

|12223242223242523242526242526272|


Evaluate :

|ab+ca2bc+ab2ca+bc2|


Evaluate the following:

|a+xyzxa+yzxya+z|


Prove the following identities:

|y+zzyzz+xxyxx+y|=4xyz


Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


x − 2y = 4
−3x + 5y = −7


Prove that :

|1b+cb2+c21c+ac2+a21a+ba2+b2|=(ab)(bc)(ca)

 


Prove that :

|zxyz2x2y2z4x4y4|=|xyzx2y2z2x4y4z4|=|x2y2z2x4y4z4xyz|=xyz(xy)(yz)(zx)(x+y+z).

 


Prove that :

|abccbacbcaabbac|=(a+bc)(b+ca)(c+ab)

 


|1aa2a21aaa21|=(a31)2

If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


State whether the matrix 
[2364] is singular or non-singular.


If A=[aij]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


Write the cofactor of a12 in the following matrix [235604157].


Let |x2+3xx1x+3x+12xx4x3x+43x|=ax4+bx3+cx2+dx+e 
be an identity in x, where abcde are independent of x. Then the value of e is


If ω is a non-real cube root of unity and n is not a multiple of 3, then  =|1ωnω2nω2n1ωnωnω2n1| 


If |2x58x|=|6273| , then x = 

 


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6


Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


Let X=[x1x2x3],A=[112201321] and B=[314] . If AX = B, then X is equal to

 


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

x2a2+y2b2z2c2=1,x2a2y2b2+z2c2=1,x2a2+y2b2+z2c2=1 has 
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


|1a2+bca31b2+cab31c2+abc3|


If A = [1-10234012] and B = [22-4-42-42-15], then:


Choose the correct option:

If a, b, c are in A.P. then the determinant [x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c] is


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.