Advertisements
Advertisements
Question
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Options
no solution
unique solution
infinitely many solutions
finitely many solutions
Solution
(b) unique solution
The given system of equations can be written in matrix form as follows:
\[\begin{bmatrix}\frac{1}{a^2} & \frac{1}{b^2} & \frac{- 1}{c^2} \\ \frac{1}{a^2} & \frac{- 1}{b^2} & \frac{1}{c^2} \\ \frac{- 1}{a^2} & \frac{1}{b^2} & \frac{1}{c^2}\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}\]
Here,
\[A=\begin{bmatrix}\frac{1}{a^2} & \frac{1}{b^2} & \frac{- 1}{c^2} \\ \frac{1}{a^2} & \frac{- 1}{b^2} & \frac{1}{c^2} \\ \frac{- 1}{a^2} & \frac{1}{b^2} & \frac{1}{c^2}\end{bmatrix},X=\begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}\frac{1}{a^2} & \frac{1}{b^2} & \frac{- 1}{c^2} \\ \frac{1}{a^2} & \frac{- 1}{b^2} & \frac{1}{c^2} \\ \frac{- 1}{a^2} & \frac{1}{b^2} & \frac{1}{c^2}\end{vmatrix}\]
\[ = \frac{1}{a^2 b^2 c^2}\begin{vmatrix}1 & 1 & - 1 \\ 1 & - 1 & 1 \\ - 1 & 1 & 1\end{vmatrix}\]
\[ = \frac{1}{a^2 b^2 c^2} \times 1\left( - 1 - 1 \right) - 1\left( 1 + 1 \right) - 1\left( 1 - 1 \right)\]
\[ = \frac{1}{a^2 b^2 c^2} \times \left( - 2 - 2 \right)\]
\[ = \frac{- 4}{a^2 b^2 c^2}\]
\[ \Rightarrow \left| A \right|\neq 0 \]
So, the given system of equations has a unique solution.
APPEARS IN
RELATED QUESTIONS
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Prove that :
If A is a singular matrix, then write the value of |A|.
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
The value of the determinant
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.