English

Prove that ∣ ∣ ∣ ∣ ∣ ∣ a 2 + B 2 C C C a B 2 + C 2 a A B B C 2 + a 2 B ∣ ∣ ∣ ∣ ∣ ∣ = 4 a B C - Mathematics

Advertisements
Advertisements

Question

Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]

Solution

\[∆ = \begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix}\]

\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 & c^2 \\ a^2 & b^2 + c^2 & a^2 \\ b^2 & b^2 & c^2 + a^2\end{vmatrix} \left[\text{ Multiplying }R_1 , R_2 \text{ and }R_3\text{ by c, a and b and then dividing by abc }\right]\]

\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 - a^2 - b^2 & c^2 - a^2 - b^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }C_2\text{ to }C_2 - C_1\text{ and }C_3\text{ to }C_3 - C_1 \right]\]

\[ = \frac{1}{abc}\begin{vmatrix}0 & - 2 b^2 & - 2 a^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }R_1\text{ to }R_1 - R_2 - R_3 \right]\]

\[ = \frac{1}{abc}[ - a^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ 0 & c^2 + a^2 - b^2\end{vmatrix} + b^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ b^2 + c^2 - a^2 & 0\end{vmatrix} \left[\text{ Expanding along }C_1 \right]\]

\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 ( c^2 + a^2 - b^2 ) \right\} + b^2 \left\{ 0 + 2 a^2 \left( b^2 + c^2 - a^2 \right) \right\} \right]\]

\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 c^2 - 2 b^2 a^2 + 2 b^4 \right\} + b^2 \left\{ 2 a^2 b^2 + 2 a^2 c^2 - 2 a^4 \right\} \right]\]

\[ = \frac{1}{abc}\left[ 2 a^2 b^2 c^2 + 2 a^4 b^2 - 2 a^2 b^4 + 2 a^2 b^4 + 2 a^2 b^2 c^2 - 2 a^4 b^2 \right]\]

\[ = \frac{1}{abc}4 a^2 b^2 c^2 = 4abc\]

Hence proved.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 60]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 35 | Page 60

RELATED QUESTIONS

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


5x + 7y = − 2
4x + 6y = − 3


xy = 5
y + z = 3
x + z = 4


A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is


Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations: 

x +y + z = 6

y + 3z = 11

and x -2y +z = 0


On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×