Advertisements
Advertisements
Question
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Solution
\[∆ = \begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix}\]
\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 & c^2 \\ a^2 & b^2 + c^2 & a^2 \\ b^2 & b^2 & c^2 + a^2\end{vmatrix} \left[\text{ Multiplying }R_1 , R_2 \text{ and }R_3\text{ by c, a and b and then dividing by abc }\right]\]
\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 - a^2 - b^2 & c^2 - a^2 - b^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }C_2\text{ to }C_2 - C_1\text{ and }C_3\text{ to }C_3 - C_1 \right]\]
\[ = \frac{1}{abc}\begin{vmatrix}0 & - 2 b^2 & - 2 a^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }R_1\text{ to }R_1 - R_2 - R_3 \right]\]
\[ = \frac{1}{abc}[ - a^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ 0 & c^2 + a^2 - b^2\end{vmatrix} + b^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ b^2 + c^2 - a^2 & 0\end{vmatrix} \left[\text{ Expanding along }C_1 \right]\]
\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 ( c^2 + a^2 - b^2 ) \right\} + b^2 \left\{ 0 + 2 a^2 \left( b^2 + c^2 - a^2 \right) \right\} \right]\]
\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 c^2 - 2 b^2 a^2 + 2 b^4 \right\} + b^2 \left\{ 2 a^2 b^2 + 2 a^2 c^2 - 2 a^4 \right\} \right]\]
\[ = \frac{1}{abc}\left[ 2 a^2 b^2 c^2 + 2 a^4 b^2 - 2 a^2 b^4 + 2 a^2 b^4 + 2 a^2 b^2 c^2 - 2 a^4 b^2 \right]\]
\[ = \frac{1}{abc}4 a^2 b^2 c^2 = 4abc\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
5x + 7y = − 2
4x + 6y = − 3
x+ y = 5
y + z = 3
x + z = 4
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?