English

Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant The other factor in the value of the determinant is (a) 4 (b) 2 (c) a + b + c (d) none of these - Mathematics

Advertisements
Advertisements

Question

Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is

Options

  • 4

  • 2

  • a + b + c

  • none of these

MCQ

Solution

\[\Delta = \begin{vmatrix} - 2a & a + b & a + c\\b + a & - 2b & b + c\\c + a & c + b & - 2c \end{vmatrix}
\text{ Let } a + b = 2C, b + c = 2A\text{ and }c + a = 2B . \]

\[ \Rightarrow a + b + b + c + c + a = 2A + 2B + 2C\]

\[ \Rightarrow 2\left( a + b + c \right) = 2\left( A + B + C \right)\]

\[ \Rightarrow a + b + c = A + B + C\]

Also,

\[a = \left( a + b + c \right) - \left( b + c \right) = \left( A + B + C \right) - 2A = B + C - A\]

Similarly, 

\[b = C + A - B, c = A + B - C\]

\[\Delta = \begin{vmatrix} 2A - 2B - 2C & 2C & 2B\\ 2C & 2B - 2C - 2A & 2A\\ 2B & 2A & 2C - 2A - 2B \end{vmatrix} = 8 \times \begin{vmatrix} A - B - C & C & B\\ C & B - C - A & A\\ B & A & C - A - B \end{vmatrix} \left[\text{ taking out 2 common from }R_1 R_2 R_3 \right]\]
\[ = 8 \times \begin{vmatrix} A - B & C + B & B\\ B - A & B - C & A\\ B + A & C - B & C - A - B \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 , C_2 \to C_2 + C_3 \right]\]

\[ = 8 \times \begin{vmatrix} \left( A - B \right) & C + B & B\\ 0 & 2B & A + B\\ 2B & 0 & C - B \end{vmatrix} \left[\text{ Applying }R_2 \to R_1 + R_2 , R_3 \to R_2 + R_3 \right]\]
\[ = 8 \times \left\{ \left( A - B \right)\begin{vmatrix} 2B & A + B\\ 0 & C - B \end{vmatrix} + \left( 2B \right) \times \begin{vmatrix} C + B & B\\ 2B & A + B \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]

\[ = 16 B\left\{ \left( A - B \right)\left( C - B \right) + \left( C + B \right)\left( A + B \right) - 2 B^2 \right\}\]

\[ = 32 ABC\]

\[ = 32\left( \frac{b + c}{2} \right)\left( \frac{c + a}{2} \right)\left( \frac{a + b}{2} \right)\]

\[ = 4\left( a + b \right)\left( b + c \right)\left( c + a \right)\]

Hence, 4 is the other factor of the determinant .

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.7 [Page 94]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.7 | Q 10 | Page 94

RELATED QUESTIONS

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.


Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & x & x \\ x & x + a & x \\ x & x & x + a\end{vmatrix} = 0, a \neq 0\]

 


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


2x − y = 1
7x − 2y = −7


2x + 3y = 10
x + 6y = 4


Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\]  is equal to 


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×