मराठी

Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant The other factor in the value of the determinant is (a) 4 (b) 2 (c) a + b + c (d) none of these - Mathematics

Advertisements
Advertisements

प्रश्न

Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is

पर्याय

  • 4

  • 2

  • a + b + c

  • none of these

MCQ

उत्तर

\[\Delta = \begin{vmatrix} - 2a & a + b & a + c\\b + a & - 2b & b + c\\c + a & c + b & - 2c \end{vmatrix}
\text{ Let } a + b = 2C, b + c = 2A\text{ and }c + a = 2B . \]

\[ \Rightarrow a + b + b + c + c + a = 2A + 2B + 2C\]

\[ \Rightarrow 2\left( a + b + c \right) = 2\left( A + B + C \right)\]

\[ \Rightarrow a + b + c = A + B + C\]

Also,

\[a = \left( a + b + c \right) - \left( b + c \right) = \left( A + B + C \right) - 2A = B + C - A\]

Similarly, 

\[b = C + A - B, c = A + B - C\]

\[\Delta = \begin{vmatrix} 2A - 2B - 2C & 2C & 2B\\ 2C & 2B - 2C - 2A & 2A\\ 2B & 2A & 2C - 2A - 2B \end{vmatrix} = 8 \times \begin{vmatrix} A - B - C & C & B\\ C & B - C - A & A\\ B & A & C - A - B \end{vmatrix} \left[\text{ taking out 2 common from }R_1 R_2 R_3 \right]\]
\[ = 8 \times \begin{vmatrix} A - B & C + B & B\\ B - A & B - C & A\\ B + A & C - B & C - A - B \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 , C_2 \to C_2 + C_3 \right]\]

\[ = 8 \times \begin{vmatrix} \left( A - B \right) & C + B & B\\ 0 & 2B & A + B\\ 2B & 0 & C - B \end{vmatrix} \left[\text{ Applying }R_2 \to R_1 + R_2 , R_3 \to R_2 + R_3 \right]\]
\[ = 8 \times \left\{ \left( A - B \right)\begin{vmatrix} 2B & A + B\\ 0 & C - B \end{vmatrix} + \left( 2B \right) \times \begin{vmatrix} C + B & B\\ 2B & A + B \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]

\[ = 16 B\left\{ \left( A - B \right)\left( C - B \right) + \left( C + B \right)\left( A + B \right) - 2 B^2 \right\}\]

\[ = 32 ABC\]

\[ = 32\left( \frac{b + c}{2} \right)\left( \frac{c + a}{2} \right)\left( \frac{a + b}{2} \right)\]

\[ = 4\left( a + b \right)\left( b + c \right)\left( c + a \right)\]

Hence, 4 is the other factor of the determinant .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.7 [पृष्ठ ९४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.7 | Q 10 | पृष्ठ ९४

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1


Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that :

\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]


\[\begin{vmatrix}a + b + c & - c & - b \\ - c & a + b + c & - a \\ - b & - a & a + b + c\end{vmatrix} = 2\left( a + b \right) \left( b + c \right) \left( c + a \right)\]

2x + 3y = 10
x + 6y = 4


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


If A is a singular matrix, then write the value of |A|.

 

State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]


If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]




The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

x + y = 1
x + z = − 6
x − y − 2z = 3


The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×