Advertisements
Advertisements
प्रश्न
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
पर्याय
positive
\[\left( ac - b^2 \right) \left( a x^2 + 2bx + c \right)\]
negative
0
उत्तर
\[\text{ Discriminant D of }{ax}^2 + 2bx + c = \left( 2b \right)^2 - 4ac < 0 \left[\text{ Given }\right]\]
\[ \Rightarrow 4 b^2 - 4ac < 0 \]
\[ \Rightarrow b^2 - ac < 0,\text{ where }a > 0 \ldots(1)\]
\[\Delta = \begin{vmatrix} a & b & ax + b\\ b & c & bx + c\\ax + b & bx + c & 0 \end{vmatrix}\]
\[ = \begin{vmatrix} ax & bx & {ax}^2 + bx\\ b & c & bx + c\\ax + b & bx + c & 0 \end{vmatrix} \left[\text{ Applying }R_1 \to x R_1 \right]\]
\[ = \frac{1}{x}\begin{vmatrix} ax + b 7 bx + c & {ax}^2 + bx + bx + c\\ b & c & bx + c\\ax + b & bx + c & 0 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2 \right]\]
\[ = \frac{1}{x}\begin{vmatrix} 0 & 0 & {ax}^2 + 2bx + c\\ b & c & bx + c\\ax + b & bx + c & 0 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_3 \right]\]
\[ = \frac{1}{x}\left\{ {ax}^2 + 2bx + c \begin{vmatrix}b & c \\ ax + b & bx + c\end{vmatrix} \right\} \left[\text{ Expanding along }R_1 \right]\]
\[ = \frac{1}{x}\left( {ax}^2 + 2bx + c \right)\left( b^2 x + bc - acx - bc \right)\]
\[ = \frac{1}{x}\left( {ax}^2 + 2bx + c \right) x \left( b^2 - ac \right) \]
\[ = \left( {ax}^2 + 2bx + c \right)\left( b^2 - ac \right) < 0 \left[\text{ From eq . }(1) \right]\]
\[ \Rightarrow \Delta < 0 \]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
Prove that
3x + ay = 4
2x + ay = 2, a ≠ 0
3x + y = 5
− 6x − 2y = 9
x + 2y = 5
3x + 6y = 15
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
The value of the determinant
The value of the determinant
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.