Advertisements
Advertisements
प्रश्न
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
उत्तर
\[∆ = \begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix}\]
\[ = \begin{vmatrix}5x + 4 & 5x + 4 & 5x + 4 \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} \left[\text{ Applying }R_1 \text{ to }R_1 + R_2 + R_3 \right]\]
\[ = 5x + 4\begin{vmatrix}1 & 1 & 1 \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} \left[\text{ Take out }5x + 4\text{ common from }R_1 \right]\]
\[ = 5x + 4\begin{vmatrix}1 & 0 & 0 \\ 2x & 4 - x & 0 \\ 2x & 0 & 4 - x\end{vmatrix} \left[\text{ Applying }C_2 \text{ to }C_2 - C_1\text{ and }C_3 \text{ to }C_3 - C_1 \right]\]
\[ = 5x + 4(4 - x )^2 \left[\text{ Expanding along }R_1 \right]\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Show that
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
Prove that :
Prove that :
5x + 7y = − 2
4x + 6y = − 3
x + 2y = 5
3x + 6y = 15
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
The value of the determinant
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.