मराठी

If a = ⎡ ⎢ ⎣ 3 − 4 2 2 3 5 1 0 1 ⎤ ⎥ ⎦ , Find A−1 and Hence Solve the Following System of Equations: - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

उत्तर

Here,
\[ A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\]
\[\left| A \right|=3 \left( 3 - 0 \right) + 4\left( 2 - 5 \right) + 2\left( 0 - 3 \right)\]
\[ = 9 - 12 - 6\]
\[ = - 9\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}3 & 5 \\ 0 & 1\end{vmatrix} = 3, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 5 \\ 1 & 1\end{vmatrix} = 3, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 3 \\ 1 & 0\end{vmatrix} = - 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 4 & 2 \\ 0 & 1\end{vmatrix} = 4, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}3 & 2 \\ 1 & 1\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}3 & - 4 \\ 1 & 0\end{vmatrix} = - 4\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 4 & 2 \\ 3 & 5\end{vmatrix} = - 26, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}3 & 2 \\ 2 & 5\end{vmatrix} = - 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}3 & - 4 \\ 2 & 3\end{vmatrix} = 17\]
\[adj A = \begin{bmatrix}3 & 3 & - 3 \\ 4 & 1 & - 4 \\ - 26 & - 11 & 17\end{bmatrix}^T \]
\[ = \begin{bmatrix}3 & 4 & - 26 \\ 3 & 1 & - 11 \\ - 3 & - 4 & 17\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 9}\begin{bmatrix}3 & 4 & - 26 \\ 3 & 1 & - 11 \\ - 3 & - 4 & 17\end{bmatrix}\]
\[AX = B\]
Here, 
\[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}- 1 \\ 7 \\ 2\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{- 9}\begin{bmatrix}3 & 4 & - 26 \\ 3 & 1 & - 11 \\ - 3 & - 4 & 17\end{bmatrix}\begin{bmatrix}- 1 \\ 7 \\ 2\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{- 9}\begin{bmatrix}- 3 + 28 - 52 \\ - 3 + 7 - 22 \\ 3 - 28 + 34\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 9}\begin{bmatrix}- 27 \\ - 18 \\ 9\end{bmatrix}\]
\[ \therefore x = 3, y = 2\text{ and }z = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 8.2 | पृष्ठ १६

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


2x + 3y = 10
x + 6y = 4


5x + 7y = − 2
4x + 6y = − 3


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


The system of linear equations

3x – 2y – kz = 10

2x – 4y – 2z = 6

x + 2y – z = 5m

is inconsistent if ______.


Using the matrix method, solve the following system of linear equations:

`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×