Advertisements
Advertisements
प्रश्न
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
उत्तर
Given: 3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20
\[D = \begin{vmatrix}3 & - 1 & 2 \\ 2 & - 1 & 1 \\ 3 & 6 & 5\end{vmatrix}\]
\[3\left( - 5 - 6 \right) + 1\left( 10 - 3 \right) + 2\left( 12 + 3 \right) = 4\]
Since D is non-zero, the system of linear equations is consistent and has a unique solution.
\[ D_1 = \begin{vmatrix}6 & - 1 & 2 \\ 2 & - 1 & 1 \\ 20 & 6 & 5\end{vmatrix}\]
\[ = 6\left( - 5 - 6 \right) + 1\left( 10 - 20 \right) + 2\left( 12 + 20 \right)\]
\[ = - 66 - 10 + 64\]
\[ = - 12\]
\[ D_2 = \begin{vmatrix}3 & 6 & 2 \\ 2 & 2 & 1 \\ 3 & 20 & 5\end{vmatrix}\]
\[ = 3\left( 10 - 20 \right) - 6\left( 10 - 3 \right) + 2\left( 40 - 6 \right)\]
\[ = - 30 - 42 + 68\]
\[ = - 4\]
\[ D_3 = \begin{vmatrix}3 & - 1 & 6 \\ 2 & - 1 & 2 \\ 3 & 6 & 20\end{vmatrix}\]
\[ = 3\left( - 20 - 12 \right) + 1\left( 40 - 6 \right) + 6\left( 12 + 3 \right)\]
\[ = - 96 + 34 + 90\]
\[ = 28\]
Now,
\[x = \frac{D_1}{D} = \frac{- 12}{4} = - 3\]
\[y = \frac{D_2}{D} = \frac{- 4}{4} = - 1\]
\[z = \frac{D_3}{D} = \frac{28}{4} = 7\]
\[ \therefore x = - 3, y = - 1\text{ and }z = 7\]
APPEARS IN
संबंधित प्रश्न
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
If \[a, b\] and c are all non-zero and
2x + 3y = 10
x + 6y = 4
Given: x + 2y = 1
3x + y = 4
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
For what value of x, the following matrix is singular?
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Write the value of
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
x + y = 1
x + z = − 6
x − y − 2z = 3
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in