Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
उत्तर
\[\text{ Let }\frac{1}{x}\text{ be }a,\frac{1}{y}\text{ be }b \text{ and}\frac{1}{z}\text{ be }c.\]
Here,
\[A = \begin{bmatrix}2 & - 3 & 3 \\ 1 & 1 & 1 \\ 3 & - 1 & 2\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & - 3 & 3 \\ 1 & 1 & 1 \\ 3 & - 1 & 2\end{vmatrix}\]
\[ = 2\left( 2 + 1 \right) + 3\left( 2 - 3 \right) + 3( - 1 - 3)\]
\[ = 6 - 3 - 12\]
\[ = - 9\]
\[ {\text{ Let }C}_{ij} {\text{be the cofactors of the elements a}}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & 1 \\ - 1 & 2\end{vmatrix} = 3, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 1 \\ 3 & 2\end{vmatrix} = 1 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 1 \\ 3 & - 1\end{vmatrix} = - 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 3 & 3 \\ - 1 & 2\end{vmatrix} = 3 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 3 \\ 3 & 2\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & - 3 \\ 3 & - 1\end{vmatrix} = - 7\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 3 & 3 \\ 1 & 1\end{vmatrix} = - 6 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 3 \\ 1 & 1\end{vmatrix} = 1, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & - 3 \\ 1 & 1\end{vmatrix} = 5\]
\[adj A = \begin{bmatrix}3 & 1 & - 4 \\ 3 & - 5 & - 7 \\ - 6 & 1 & 5\end{bmatrix}^T \]
\[ = \begin{bmatrix}3 & 3 & - 6 \\ 1 & - 5 & 1 \\ - 4 & - 7 & 5\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 9}\begin{bmatrix}3 & 3 & - 6 \\ 1 & - 5 & 1 \\ - 4 & - 7 & 5\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{- 9}\begin{bmatrix}3 & 3 & - 6 \\ 1 & - 5 & 1 \\ - 4 & - 7 & 5\end{bmatrix}\begin{bmatrix}10 \\ 10 \\ 13\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{- 9}\begin{bmatrix}30 + 30 - 78 \\ 10 - 50 + 13 \\ - 40 - 70 + 65\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{- 9}\begin{bmatrix}- 18 \\ - 27 \\ - 45\end{bmatrix}\]
\[ \Rightarrow x = \frac{1}{a} = \frac{- 9}{- 18}, y = \frac{1}{b} = \frac{- 9}{- 27}\text{ and }z = \frac{1}{c} = \frac{- 9}{- 45}\]
\[ \therefore x = \frac{1}{a} = \frac{1}{2}, y = \frac{1}{b} = \frac{1}{3}\text{ and }z = \frac{1}{c} = \frac{1}{5}\]
APPEARS IN
संबंधित प्रश्न
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
2x − y = 1
7x − 2y = −7
Prove that :
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
The value of the determinant
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The value of the determinant
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.