मराठी

2y − 3z = 0 X + 3y = − 4 3x + 4y = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

2y − 3z = 0
x + 3y = − 4
3x + 4y = 3

उत्तर

These equations can be written as
0x + 2y − 3z = 0
x + 3y + 0z = − 4
 3x + 4y + 0z = 3

\[D = \begin{vmatrix}0 & 2 & - 3 \\ 1 & 3 & 0 \\ 3 & 4 & 0\end{vmatrix}\] 
\[ = 0(0 - 0) - 2(0 - 0) - 3(4 - 9)\] 
\[ = 15\] 
\[ D_1 = \begin{vmatrix}0 & 2 & - 3 \\ - 4 & 3 & 0 \\ 3 & 4 & 0\end{vmatrix}\] 
\[ = 0(0 - 0) - 2(0 - 0) - 3( - 16 - 9)\] 
\[ = 75\] 
\[ D_2 = \begin{vmatrix}0 & 0 & - 3 \\ 1 & - 4 & 0 \\ 3 & 3 & 0\end{vmatrix}\] 
\[ = 0(0 - 0) - 0(0 - 0) - 3(3 + 12)\] 
\[ = - 45\] 
\[ D_3 = \begin{vmatrix}0 & 2 & 0 \\ 1 & 3 & - 4 \\ 3 & 4 & 3\end{vmatrix}\] 
\[ = 0(9 + 16) - 2(3 + 12) - 0(4 - 9)\] 
\[ = - 30\] 
Now,
\[x = \frac{D_1}{D} = \frac{75}{15} = 5\] 
\[y = \frac{D_2}{D} = \frac{- 45}{15} = - 3\] 
\[z = \frac{D_3}{D} = \frac{- 30}{15} = - 2\] 
\[ \therefore x = 5, y = - 3\text{ and }z = - 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.4 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.4 | Q 15 | पृष्ठ ८४

संबंधित प्रश्‍न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.

 

If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


\[\begin{vmatrix}a + b + c & - c & - b \\ - c & a + b + c & - a \\ - b & - a & a + b + c\end{vmatrix} = 2\left( a + b \right) \left( b + c \right) \left( c + a \right)\]

9x + 5y = 10
3y − 2x = 8


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]




The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×