Advertisements
Advertisements
प्रश्न
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
उत्तर
The given system of equations can be written as follows:
AX = B
Here,
\[ A = \begin{bmatrix}1 & 1 & - 2 \\ 1 & - 2 & 1 \\ - 2 & 1 & 1\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}5 \\ - 2 \\ 4\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 & - 2 \\ 1 & - 2 & 1 \\ - 2 & 1 & 1\end{vmatrix}\]
\[ = 1\left( - 2 - 1 \right) - 1\left( 1 + 2 \right) - 2(1 - 4)\]
\[ = - 3 - 3 + 6\]
\[ = 0\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]\text{. Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 2 & 1 \\ 1 & 1\end{vmatrix} = - 3 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 1 \\ - 2 & 1\end{vmatrix} = - 3, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & - 2 \\ - 2 & 1\end{vmatrix} = - 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & - 2 \\ 1 & 1\end{vmatrix} = - 3, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & - 2 \\ - 2 & 1\end{vmatrix} = - 3 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ - 2 & 1\end{vmatrix} = - 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & - 2 \\ - 2 & 1\end{vmatrix} = - 3, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & - 2 \\ 1 & 1\end{vmatrix} = - 3, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 1 & - 2\end{vmatrix} = - 3\]
\[adj A = \begin{bmatrix}- 3 & - 3 & - 3 \\ - 3 & - 3 & - 3 \\ - 3 & - 3 & - 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 3 & - 3 & - 3 \\ - 3 & - 3 & - 3 \\ - 3 & - 3 & - 3\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}- 3 & - 3 & - 3 \\ - 3 & - 3 & - 3 \\ - 3 & - 3 & - 3\end{bmatrix}\begin{bmatrix}5 \\ - 2 \\ 4\end{bmatrix}\]
\[ = \begin{bmatrix}- 15 + 6 - 12 \\ - 15 + 6 - 12 \\ - 15 + 6 - 12\end{bmatrix}\]
\[ = \begin{bmatrix}- 21 \\ - 21 \\ - 21\end{bmatrix} \neq 0\]
Hence, the given system of equations is consistent.
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
Prove that :
3x + y = 5
− 6x − 2y = 9
For what value of x, the following matrix is singular?
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
The value of the determinant
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.