मराठी

Without Expanding, Show that the Value of the Following Determinant is Zero: ∣ ∣ ∣ ∣ ∣ √ 23 + √ 3 √ 5 √ 5 √ 15 + √ 46 5 √ 10 3 + √ 115 √ 15 5 ∣ ∣ ∣ ∣ ∣ - Mathematics

Advertisements
Advertisements

प्रश्न

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]

उत्तर

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
\[ = \begin{vmatrix}\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} & 5 & \sqrt{10} \\ 3 & \sqrt{15} & 5\end{vmatrix} + \begin{vmatrix}\sqrt{23} & \sqrt{5} & \sqrt{5} \\ \sqrt{46} & 5 & \sqrt{10} \\ \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
\[ = \sqrt{3}\begin{vmatrix}1 & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & 5 & \sqrt{10} \\ \sqrt{3} & \sqrt{15} & 5\end{vmatrix} + \sqrt{23}\begin{vmatrix}1 & \sqrt{5} & \sqrt{5} \\ \sqrt{2} & 5 & \sqrt{10} \\ \sqrt{5} & \sqrt{15} & 5\end{vmatrix}\]
\[ = \sqrt{3} \times \sqrt{5}\begin{vmatrix}1 & 1 & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{10} \\ \sqrt{3} & \sqrt{3} & 5\end{vmatrix} + \sqrt{23} \times \sqrt{5}\begin{vmatrix}1 & \sqrt{5} & 1 \\ \sqrt{2} & 5 & \sqrt{2} \\ \sqrt{5} & \sqrt{15} & \sqrt{5}\end{vmatrix}\]
\[ = 0 + 0\]
\[ = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.2 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.2 | Q 2.16 | पृष्ठ ५७

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Evaluate the following determinant:

\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]


\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


3x + ay = 4
2x + ay = 2, a ≠ 0


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0


Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]


If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\]  is equal to 


Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×